156
Views
0
CrossRef citations to date
0
Altmetric
Fundamental Research / Recherche fondamentale

Performance Evaluation of High-resolution Reanalysis Datasets Over North-central British Columbia

, ORCID Icon &
Pages 222-242 | Received 26 Jul 2023, Accepted 05 Jan 2024, Published online: 06 Feb 2024

References

  • Albers, S. J., Déry, S. J., & Petticrew, E. L. (2016). Flooding in the Nechako River Basin of Canada: A random forest modeling approach to flood analysis in a regulated reservoir system. Canadian Water Resources Journal, 41(1–2), 250–260. https://doi.org/10.1080/07011784.2015.1109480
  • Arabzadeh, A., Ehsani, M. R., Guan, B., Heflin, S., & Behrangi, A. (2020). Global intercomparison of atmospheric rivers precipitation in remote sensing and reanalysis products. Journal of Geophysical Research: Atmospheres, 125(21), e2020JD033021. https://doi.org/10.1029/2020JD033021
  • Barry, R. G., & Chorley, R. J. (2003). Atmosphere, weather and climate (8th ed., p. 472). Routledge.
  • Benke, A. C., & Cushing, C. E. (2005). Rivers of North America (p. 1144). Elsevier.
  • Betts, A. K., Ball, J. H., & Viterbo, P. (2003). Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. Journal of Hydrometeorology, 4(6), 1194–1211. https://doi.org/10.1175/1525-7541(2003)004<1194:EOTESW>2.0.CO;2
  • Betts, A. K., Chan, D. Z., & Desjardins, R. L. (2019). Near-surface biases in ERA5 over the Canadian Prairies. Frontiers in Environmental Science, 7, 129. https://doi.org/10.3389/fenvs.2019.00129
  • Boyd, S., Ghobrial, T., & Loewen, M. (2023, July 9–12). Comparison between reanalysis and local weather data for estimating pre-break-up heat fluxes into the ice cover. CGU HS Committee on River Ice Processes and the Environment.
  • Cao, B., Gruber, S., Zheng, D., & Li, X. (2020). The ERA5-Land soil temperature bias in permafrost regions. The Cryosphere, 14(8), 2581–2595. https://doi.org/10.5194/tc-14-2581-2020
  • Cardinal, E., Thériault, J. M., Stewart, R. E., Thompson, H. D., & Déry, S. J. (2023). Climatology of and factors contributing to occurrences of near-0°C temperatures and associated precipitation at and near Terrace, British Columbia, Canada. Atmosphere-Ocean, 1–20. https://doi.org/10.1080/07055900.2023.2270560
  • Choi, W., Tareghian, R., Choi, J., & Hwang, C.-s. (2014). Geographically heterogeneous temporal trends of extreme precipitation in Wisconsin, USA during 1950–2006. International Journal of Climatology, 34(9), 2841–2852. https://doi.org/10.1002/joc.3878
  • Cuo, L., Beyene, T. K., Voisin, N., Su, F., Lettenmaier, D. P., Alberti, M., & Richey, J. E. (2011). Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington. Hydrological Processes, 25(11), 1729–1753. https://doi.org/10.1002/hyp.7932
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., Berg, L. V. D., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
  • Demarchi, D. A. (2011). An introduction to the Ecoregions of British Columbia. In Ministry of Environment. http://www.env.gov.bc.ca/wld/documents/techpub/rn324.pdf
  • Diaconescu, E. P., Mailhot, A., Brown, R., & Chaumont, D. (2018). Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Climate Dynamics, 50(5–6), 2061–2085. https://doi.org/10.1007/s00382-017-3736-4
  • Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167–1181. https://doi.org/10.1016/j.envint.2005.03.004
  • Dynesius, M., & Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266(5186), 753–762. https://doi.org/10.1126/science.266.5186.753
  • Eum, H.-I., Dibike, Y., Prowse, T., & Bonsal, B. (2014). Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed, Canada. Hydrological Processes, 28(14), 4250–4271. https://doi.org/10.1002/hyp.10236
  • Fortin, V., Roy, G., Donaldson, N., & Mahidjiba, A. (2015). Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA). Journal of Hydrology, 531(Part 2), 296–307. https://doi.org/10.1016/j.jhydrol.2015.08.003
  • Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., & Mahidjiba, A. (2018). Ten years of science based on the Canadian Precipitation Analysis: A CaPA System overview and literature review. Atmosphere-Ocean, 56(3), 178–196. https://doi.org/10.1080/07055900.2018.1474728
  • Fremier, A. (2004). Stream ecology: concepts and case study of macroinvertebrates in the Skeena River Watershed, British Columbia. University of California Davis, 1–21. https://www.geology.ucdavis.edu/~shlemonc/html/trips/skeena_river/documents/initial_reports/AKFremier.pdf
  • Gasset, N., Fortin, V., Dimitrijevic, M., Carrera, M., Bilodeau, B., Muncaster, R., Gaborit, É, Roy, G., Pentcheva, N., Bulat, M., Wang, X., Pavlovic, R., Lespinas, F., Khedhaouiria, D., & Mai, J. (2021). A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model. Hydrology and Earth System Sciences, 25(9), 4917–4945. https://doi.org/10.5194/hess-25-4917-2021
  • Gatien, P., Arsenault, R., Martel, J.-L., & St-Hilaire, A. (2023). Using the ERA5 and ERA5-Land reanalysis datasets for river water temperature modelling in a data-scarce region. Canadian Water Resources Journal, 48(2), 93–110. https://doi.org/10.1080/07011784.2022.2113917
  • Gebremichael, M., Krajewski, W. F., Morrissey, M. L., Huffman, G. J., & Adler, R. F. (2005). A detailed evaluation of GPCP 1° daily rainfall estimates over the Mississippi River basin. Journal of Applied Meteorology, 44(5), 665–681. https://doi.org/10.1175/JAM2233.1
  • Goswami, U. P., & Goyal, M. K. (2022). Relative contribution of climate variables on long-term runoff using Budyko framework. In Water resources management and sustainability (pp. 147–159). https://doi.org/10.1007/978-981-16-6573-8_7.
  • Goswami, U. P., Hazra, B., & Goyal, M. K. (2018). Copula-based probabilistic characterization of precipitation extremes over North Sikkim Himalaya. Atmospheric Research, 212, 273–284. https://doi.org/10.1016/j.atmosres.2018.05.019
  • Goyal, M. K. (2014). Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India. Water Resources Management, 28(6), 1501–1515. https://doi.org/10.1007/s11269-014-0529-y
  • Guidicelli, M., Huss, M., Gabella, M., & Salzmann, N. (2023). Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning. The Cryosphere, 17(2), 977–1002. https://doi.org/10.5194/tc-17-977-2023
  • Harder, P., & Pomeroy, J. (2013). Estimating precipitation phase using a psychrometric energy balance method. Hydrological Processes, 27(13), 1901–1914. https://doi.org/10.1002/hyp.9799
  • He, Z., & Pomeroy, J. W. (2023). Assessing hydrological sensitivity to future climate change over the Canadian southern boreal forest. Journal of Hydrology, 624(January), 129897. https://doi.org/10.1016/j.jhydrol.2023.129897
  • Hernández-Henríquez, M. A., Sharma, A. R., Taylor, M., Thompson, H. D., & Déry, S. J. (2018). The Cariboo Alpine Mesonet: Sub-hourly hydrometeorological observations of British Columbia’s Cariboo Mountains and surrounding area since 2006. Earth System Science Data, 10(3), 1655–1672. https://doi.org/10.5194/essd-10-1655-2018
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Hopkinson, R. F., McKenney, D. W., Milewska, E. J., Hutchinson, M. F., Papadopol, P., & Vincent, L. A. (2011). Impact of aligning climatological day on gridding daily maximum-minimum temperature and precipitation over Canada. Journal of Applied Meteorology and Climatology, 50(8), 1654–1665. https://doi.org/10.1175/2011JAMC2684.1
  • Hwang, Y., & Li, Y. (2022). Characteristics of the daytime and nighttime MCSs over the Canadian Prairies using an ERA5-forced convection-permitting climate model. Atmospheric Research, 279, 106380. https://doi.org/10.1016/j.atmosres.2022.106380
  • Kattel, D. B., Yao, T., Yang, W., Gao, Y., & Tian, L. (2015). Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. International Journal of Climatology, 35(15), 4431–4443. https://doi.org/10.1002/joc.4297
  • Kendall, M. G. (1975). Rank correlation methods (p. 202). Griffin. https://doi.org/10.1109/icassp.1997.599355.
  • Kienzle, S. W. (2008). A new temperature based method to separate rain and snow. Hydrological Processes, 22(26), 5067–5085. https://doi.org/10.1002/hyp.7131
  • Lespinas, F., Fortin, V., Roy, G., Rasmussen, P., & Stadnyk, T. (2015). Performance evaluation of the Canadian precipitation analysis (CaPA). Journal of Hydrometeorology, 16(5), 2045–2064. https://doi.org/10.1175/JHM-D-14-0191.1
  • Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., & Pan, X. (2019). High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrology and Earth System Sciences, 23(11), 4635–4659. https://doi.org/10.5194/hess-23-4635-2019
  • Lilhare, R., Déry, S. J., Pokorny, S., Stadnyk, T. A., & Koenig, K. A. (2019). Intercomparison of multiple hydroclimatic datasets across the Lower Nelson River Basin, Manitoba, Canada. Atmosphere-Ocean, 57(4), 262–278. https://doi.org/10.1080/07055900.2019.1638226
  • Lilhare, R., Pokorny, S., Déry, S. J., Stadnyk, T. A., & Koenig, K. A. (2020). Sensitivity analysis and uncertainty assessment in water budgets simulated by the variable infiltration capacity model for Canadian subarctic watersheds. Hydrological Processes, 34(9), 2057–2075. https://doi.org/10.1002/hyp.13711
  • Lynch-Stieglitz, M. (1994). The development and validation of a simple snow model for the GISS GCM. Journal of Climate, 7(12), 1842–1855. https://doi.org/10.1175/1520-0442(1994)007%3C1842:TDAVOA%3E2.0.CO;2
  • Mai, J., Kornelsen, K. C., Tolson, B. A., Fortin, V., Gasset, N., Bouhemhem, D., Schäfer, D., Leahy, M., Anctil, F., & Coulibaly, P. (2020). The Canadian Surface Prediction Archive (CaSPAr): A platform to enhance environmental modeling in Canada and globally. Bulletin of the American Meteorological Society, 101(3), 341–356. https://doi.org/10.1175/BAMS-D-19-0143.1
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187 http://www.jstor.com/stable/1907187
  • Mekis, E., Donaldson, N., Reid, J., Zucconi, A., Hoover, J., Li, Q., Nitu, R., & Melo, S. (2018). An overview of surface-based precipitation observations at Environment and Climate Change Canada. Atmosphere-Ocean, 56(2), 71–95. https://doi.org/10.1080/07055900.2018.1433627
  • Mekis, E., & Hogg, W. D. (1999). Rehabilitation and analysis of Canadian daily precipitation time series. Atmosphere-Ocean, 37(1), 53–85. https://doi.org/10.1080/07055900.1999.9649621
  • Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Mankin, G., Parrish, D., & Shi, W. (2006). North American regional reanalysis. Bulletin of the American Meteorological Society, 87(3), 343–360. https://doi.org/10.1175/BAMS-87-3-343
  • Milewska, E. J., Vincent, L. A., Hartwell, M. M., Charlesworth, K., & Mekis, É. (2019). Adjusting precipitation amounts from Geonor and Pluvio automated weighing gauges to preserve continuity of observations in Canada. Canadian Water Resources Journal, 44(2), 127–145. https://doi.org/10.1080/07011784.2018.1530611
  • Motoyama, H. (1990). Simulation of seasonal snowcover based on air temperature and precipitation. Journal of Applied Meteorology, 29(11), 1104–1110. https://doi.org/10.1175/1520-0450(1990)029%3C1104:SOSSBO%3E2.0.CO;2
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  • Picketts, I. M., Déry, S. J., Parkes, M. W., Sharma, A. R., & Matthews, C. A. (2020). Scenarios of climate change and natural resource development: Complexity and uncertainty in the Nechako Watershed. Canadian Geographer, 64(3), 475–488. https://doi.org/10.1111/cag.12609
  • Picketts, I. M., Parkes, M. W., & Déry, S. J. (2017). Climate change and resource development impacts in watersheds: Insights from the Nechako River Basin, Canada. Canadian Geographer, 61(2), 196–211. https://doi.org/10.1111/cag.12327
  • Rapaić, M., Brown, R., Markovic, M., & Chaumont, D. (2015). An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmosphere-Ocean, 53(3), 283–303. https://doi.org/10.1080/07055900.2015.1045825
  • Report on Skeena Watershed Ecosystem Valuation Plan. (2013). Skeena watershed ecosystem valuation project plan. Skeena watershed conservation coalition Skeena wild conservation trust, 2013 (Issue June).
  • Sanderson, D., Picketts, I. M., Déry, S. J., Fell, B., Baker, S., Lee-Johnson, E., & Auger, M. (2015). Climate change and water at Stellat’en First Nation, British Columbia, Canada: Insights from western science and traditional knowledge. Canadian Geographer, 59(2), 136–150. https://doi.org/10.1111/cag.12142
  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • Sharma, A. R., & Déry, S. J. (2020a). Linking atmospheric rivers to annual and extreme river runoff in British Columbia and Southeastern Alaska. Journal of Hydrometeorology, 21(11), 2457–2472. https://doi.org/10.1175/JHM-D-19-0281.1
  • Sharma, A. R., & Déry, S. J. (2020b). Variability and trends of landfalling atmospheric rivers along the Pacific Coast of northwestern North America. International Journal of Climatology, 40(1), 544–558. https://doi.org/10.1002/joc.6227
  • Singh, V., & Goyal, M. K. (2016). Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmospheric Research, 167, 34–60. https://doi.org/10.1016/j.atmosres.2015.07.005
  • Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527–2544. https://doi.org/10.5194/hess-24-2527-2020
  • Thériault, J. M., Stewart, R. E., & Henson, W. (2010). On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. Journal of Applied Meteorology and Climatology, 49(7), 1429–1442. https://doi.org/10.1175/2010JAMC2321.1
  • Thériault, J. M., Stewart, R. E., Milbrandt, J. A., & Yau, M. K. (2006). On the simulation of winter precipitation types. Journal of Geophysical Research: Atmospheres, 111(18), D18202. https://doi.org/10.1029/2005JD006665
  • Ul Islam, S., & Déry, S. J. (2017). Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada. Hydrology and Earth System Sciences, 21(3), 1827–1847. https://doi.org/10.5194/hess-21-1827-2017
  • Vore, M. E., Déry, S. J., Hou, Y., & Wei, X. (2020). Climatic influences on forest fire and mountain pine beetle outbreaks and resulting runoff effects in large watersheds in British Columbia, Canada. Hydrological Processes, 34(24), 4560–4575. https://doi.org/10.1002/hyp.13908
  • Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F. W., Dayon, G., & Anslow, F. (2019). A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Scientific Data, 6(1), 180299. https://doi.org/10.1038/sdata.2018.299
  • Wong, J. S., Razavi, S., Bonsal, B. R., Wheater, H. S., & Asong, Z. E. (2017). Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrology and Earth System Sciences, 21(4), 2163–2185. https://doi.org/10.5194/hess-21-2163-2017
  • Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9), 1807–1829. https://doi.org/10.1002/hyp.1095
  • Zhang, Q., Li, J., Singh, V. P., & Xu, C.-Y. (2013). Copula-based spatio-temporal patterns of precipitation extremes in China. International Journal of Climatology, 33(5), 1140–1152. https://doi.org/10.1002/joc.3499
  • Zhang, W., Zeng, J., Wang, Y., Wang, Y., & Huai, B. (2023). Capability of multi-reanalyses to represent precipitation over the Greenland Ice Sheet. Atmospheric Research, 284, 106598. https://doi.org/10.1016/j.atmosres.2022.106598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.