54
Views
0
CrossRef citations to date
0
Altmetric
Fundamental Research / Recherche fondamentale

Fine Particle Formation and Dependence of Wet Deposition on Precipitation Intensity in an Urban Area

ORCID Icon, , , , , & show all
Pages 243-253 | Received 07 Nov 2023, Accepted 16 Feb 2024, Published online: 18 Mar 2024

References

  • Ahlm, L., Krejci, R., Nilsson, E. D., Mårtensson, E. M., Vogt, M., & Artaxo, P. (2010). Emission and dry deposition of accumulation mode particles in the Amazon Basin. Atmospheric Chemistry and Physics, 10(21), 10237–10253. https://doi.org/10.5194/acp-10-10237-2010
  • Aw, J., & Kleeman, M. J. (2003). Evaluating the first-order effect of intraannual temperature variability on urban air pollution. Journal of Geophysical Research: Atmospheres, 108(D12), Article 4365. https://doi.org/10.1029/2002jd002688
  • Birmili, W., Berresheim, H., Plass-Dulmer, C., Elste, T., Gilge, S., Wiedensohler, A., & Uhrner, U. (2003). The Hohenpeissenberg aerosol formation experiment (HAFEX): A long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmospheric Chemistry and Physics, 3(2), 361–376. https://doi.org/10.5194/acp-3-361-2003
  • Cai, W., Li, K., Liao, H., Wang, H., & Wu, L. (2017). Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change, 7(4), 257. https://doi.org/10.1038/nclimate3249
  • Dada, L., Paasonen, P., Nieminen, T., Mazon, S. B., Kontkanen, J., Perakyla, O., Lehtipalo, K., Hussein, T., Petäjä, T., Kerminen, V., Bäck, J., & Kulmala, M. (2017). Long-term analysis of clear-sky new particle formation events and nonevents in Hyytiälä. Atmospheric Chemistry and Physics, 17(10), 6227–6241. https://doi.org/10.5194/acp-17-6227-2017
  • Fors, E. O., Swietlicki, E., Svenningsson, B., Kristensson, A., Frank, G. P., & Sporre, M. (2011). Hygroscopic properties of the ambient aerosol in southern Sweden – a two year study. Atmospheric Chemistry and Physics, 11(16), 8343–8361. https://doi.org/10.5194/acp-11-8343-2011
  • Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kürten, A., … Carslaw, K. S. (2017). Causes and importance of new particle formation in the present-day and preindustrial atmospheres. Journal of Geophysical Research: Atmospheres, 122(16), 8739–8760. https://doi.org/10.1002/2017JD026844
  • Grote, R., & Niinemets, U. (2008). Modeling volatile isoprenoid emissions - a story with split ends. Plant Biology, 10(1), 8–28. https://doi.org/10.1055/s-2007-964975
  • Grythe, H., Kristiansen, N. I., Zwaaftink, C. D. G., Eckhardt, S., Strom, J., Tunved, P., … Stohl, A. (2017). A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10. Geoscientific Model Development, 10(4), 1447–1466. https://doi.org/10.5194/gmd-10-1447-2017
  • Guo, E.-g., Wang, C., Qie, G.-f., & Cai, Y. (2013). Influence of typical weather conditions on the airborne particulate matters in urban forests in northern China. China Environmental Science, 33(7), 1185–1198. https://doi.org/10.3969/j.issn.1000-6923.2013.07.005
  • Guo, H., Wang, D. W., Cheung, K., Ling, Z. H., Chan, C. K., & Yao, X. H. (2012). Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong. Atmospheric Chemistry and Physics, 12(20), 9923–9939. https://doi.org/10.5194/acp-12-9923-2012
  • Hamed, A., Korhonen, H., Sihto, S.-L., Joutsensaari, J., Jarvinen, H., Petaja, T., Petäjä, T., Arnold, F., Nieminen, T., Kulmala, M., Smith, J. N., Lehtinen, K. E. J., & Laaksonen, A. (2011). The role of relative humidity in continental new particle formation. Journal of Geophysical Research, 116(D3), Article D03202. https://doi.org/10.1029/2010JD014186
  • Jokinen, T., Kontkanen, J., Lehtipalo, K., Manninen, H. E., Aalto, J., Porcar-Castell, A., Garmash, O., Nieminen, T., Ehn, M., Kangasluoma, J., Junninen, H., Levula, J., Duplissy, J., Ahonen, L. R., Rantala, P., Heikkinen, L., Yan, C., Sipilä, M., Worsnop, D. R., … Kulmala, M. (2017). Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 7(1), 45707. https://doi.org/10.1038/srep45707
  • Jun, Y.-S., Jeong, C.-H., Sabaliauskas, K., Leaitch, W. R., & Evans, G. J. (2014). A year-long comparison of particle formation events at paired urban and rural locations. Atmospheric Pollution Research, 5(3), 447–454. https://doi.org/10.5094/APR.2014.052
  • Kanawade, V. P., Tripathi, S. N., Siingh, D., Gautam, A. S., SrivastavaC, A. K., Kamra, A. K., Soni, V. K., & Sethi, V. (2014). Observations of new particle formation at two distinct Indian subcontinental urban locations. Atmospheric Environment, 96, 370–379. https://doi.org/10.1016/j.atmosenv.2014.08.001
  • Kerminen, V.-M., Chen, X., Vakkari, V., Petaja, T., Kulmala, M., & Bianchi, F. (2018). Atmospheric new particle formation and growth: Review of field observations. Environmental Research Letters, 13(10), 103003. https://doi.org/10.1088/1748-9326/aadf3c
  • Kleeman, M. J. (2008). A preliminary assessment of the sensitivity of air quality in California to global change. Climatic Change, 87(S1), 273–292. https://doi.org/10.1007/s10584-007-9351-3
  • Kuerten, A., Bianchi, F., Almeida, J., Kupiainen-Maatta, O., Dunne, E. M., Duplissy, J., Williamson, C., Barmet, P., Breitenlechner, M., Dommen, J., Donahue, N. M., Flagan, R. C., Franchin, A., Gordon, H., Hakala, J., Hansel, A., Heinritzi, M., Ickes, L., Jokinen, T., … Curtius, J. (2016). Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research: Atmospheres, 121(20), 12377–12400. https://doi.org/10.1002/2015jd023908
  • Laakso, L. (2003). Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmospheric Environment, 37(25), 3605–3613. https://doi.org/10.1016/S1352-2310(03)00326-1
  • Lee, Y.-G., Lee, H.-W., Kim, M.-S., Choi, C. Y., & Kim, J. (2008). Characteristics of particle formation events in the coastal region of Korea in 2005. Atmospheric Environment, 42(16), 3729–3739. https://doi.org/10.1016/j.atmosenv.2007.12.064
  • Liu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., & Wiedensohler, A. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmospheric Chemistry and Physics, 11(7), 3479–3494. https://doi.org/10.5194/acp-11-3479-2011
  • Nidzgorska-Lencewicz, J., & Czarnecka, M. (2015). Winter weather conditions vs. air quality in Tricity, Poland. Theoretical and Applied Climatology, 119(3-4), 611–627. https://doi.org/10.1007/s00704-014-1129-8
  • O'Halloran, T. L., Fuentes, J. D., Collins, D. R., Cleveland, M. J., & Keene, W. C. (2009). Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S. Atmospheric Environment, 43(22-23), 3586–3595. https://doi.org/10.1016/j.atmosenv.2009.03.033
  • Olszowski, T., & Ziembik, Z. (2018). An alternative conception of PM10 concentration changes after short-term precipitation in urban environment. Journal of Aerosol Science, 121, 21–30. https://doi.org/10.1016/j.jaerosci.2018.04.001
  • Paasonen, P., Asmi, A., Petaja, T., Kajos, M. K., Aijala, M., Junninen, H., Holst, T., Abbatt, J. P. D., Arneth, A., Birmili, W., van der Gon, H. D., Hamed, A., Hoffer, A., Laakso, L., Laaksonen, A., Richard Leaitch, W., Plass-Dülmer, C., Pryor, S. C., Räisänen, P., … Kulmala, M. (2013). Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 6(6), 438–442. https://doi.org/10.1038/ngeo1800
  • Pan, J., Shan, J., Li, G., & Wu, Z. (2017). Annual report on urban development of China No. 10. Social science academic press (China).
  • Pierce, J. R., Westervelt, D. M., Atwood, S. A., Barnes, E. A., & Leaitch, W. R. (2014). New-particle formation, growth and climate-relevant particle production in Egbert, Canada: Analysis from 1 year of size-distribution observations. Atmospheric Chemistry and Physics, 14(16), 8647–8663. https://doi.org/10.5194/acp-14-8647-2014
  • Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 12(12), 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019
  • Ren, Y., Zhang, H., Wei, W., Cai, X., & Song, Y. (2020). Determining the fluctuation of PM2.5 mass concentration and its applicability to Monin-Obukhov similarity. Science of The Total Environment, 710, 136398. https://doi.org/10.1016/j.scitotenv.2019.136398
  • Salma, I., Nemeth, Z., Kerminen, V.-M., Aalto, P., Nieminen, T., Weidinger, T., Molnár, Á, Imre, K., & Kulmala, M. (2016). Regional effect on urban atmospheric nucleation. Atmospheric Chemistry and Physics, 16(14), 8715–8728. https://doi.org/10.5194/acp-16-8715-2016
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
  • Shen, X., Sun, J., Zhang, X., Zhang, Y., Wang, Y., Tan, K., Wang, P., Zhang, L., Qi, X., Che, H., Zhang, Z., Zhong, J., Zhao, H., & Ren, S. (2018). Comparison of submicron particles at a rural and an urban site in the north China plain during the December 2016 heavy pollution episodes. Journal of Meteorological Research, 32(1), 26–37. https://doi.org/10.1007/s13351-018-7060-7
  • Shi, C., Yuan, R., Wu, B., Meng, Y., Zhang, H., Zhang, H., & Gong, Z. (2018). Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China. Science of the Total Environment, 642, 1221–1232. https://doi.org/10.1016/j.scitotenv.2018.06.137
  • Suni, T., Sogacheva, L., Lauros, J., Hakola, H., Baeck, J., Kurten, T., Cleugh, H., van Gorsel, E., Briggs, P., Sevanto, S., & Kulmala, M. (2009). Cold oceans enhance terrestrial new-particle formation in near-coastal forests. Atmospheric Chemistry and Physics, 9(22), 8639–8650. https://doi.org/10.5194/acp-9-8639-2009
  • Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ssling, A. M., Wiedensohler, A., Petäjä, T., Dal Maso, M., & Kulmala, M. (2007). New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research: Atmospheres, 112(D9), Article D09209. https://doi.org/10.1029/2006jd007406
  • Ye, X., Tang, C., Yin, Z., Chen, J., Ma, Z., Kong, L., Yang, X., Gao, W., & Geng, F. (2013). Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign. Atmospheric Environment, 64, 263–269. https://doi.org/10.1016/j.atmosenv.2012.09.064
  • Zhang, X., Yin, Y., Lin, Z., Han, Y., Hao, J., Yuan, L., Chen, K., Chen, J., Kong, S., Shan, Y., Xiao, H., & Tan, W. (2017). Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Science of the Total Environment, 575, 309–320. https://doi.org/10.1016/j.scitotenv.2016.09.212
  • Zhang, X., Zhong, J., Wang, J., Wang, Y., & Liu, Y. (2018a). The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmospheric Chemistry and Physics, 18(8), 5991–5999. https://doi.org/10.5194/acp-18-5991-2018
  • Zhang, Y., Wang, Y., Zhang, X., Shen, X., Sun, J., Wu, L., Zhang, Z., & Che, H. (2018b). Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in Beijing in December 2016. Journal of Meteorological Research, 32(1), 1–13. https://doi.org/10.1007/s13351-018-7051-8
  • Zhao, S., Yu, Y., Yin, D., & He, J. (2015). Meteorological dependence of particle number concentrations in an urban area of complex terrain, Northwestern China. Atmospheric Research, 164-165, 304–317. https://doi.org/10.1016/j.atmosres.2015.06.001
  • Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Liu, C., & Dong, Y. S. (2018a). Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols. Atmospheric Research, 209, 59–64. https://doi.org/10.1016/j.atmosres.2018.03.011
  • Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., & Che, H. (2018b). Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmospheric Chemistry and Physics, 18(1), 247–258. https://doi.org/10.5194/acp-18-247-2018
  • Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., & Baltensperger, U. (2013). Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmospheric Chemistry and Physics, 13(21), 10609–10631. https://doi.org/10.5194/acp-13-10609-2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.