68
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Low-cost and high-performance acetylglucose-based imidazolium salts for copper-catalyzed cyclization of propargylic amines and CO2

, , , , , , & show all
Pages 180-196 | Received 07 Aug 2023, Accepted 14 Feb 2024, Published online: 09 Mar 2024

References

  • Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114(3), 1709–1742. DOI: 10.1021/cr4002758.
  • Cauwenbergh, R.; Goyal, V.; Maiti, R.; Natte, K.; Das, S. Challenges and Recent Advancements in the Transformation of CO2 into Carboxylic Acids: Straightforward Assembly with Homogeneous 3d Metals. Chem. Soc. Rev. 2022, 51(22), 9371–9423. DOI: 10.1039/d1cs00921d.
  • Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Recent Advances in Fixation of CO2 into Organic Carbamates through Multicomponent Reaction Strategies. Chin. J. Catal. 2022, 43(7), 1598–1617. DOI: 10.1016/S1872-2067(21)64029-9.
  • Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118(2), 434–504. DOI: 10.1021/acs.chemrev.7b00435.
  • Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew. Chem. Int. Ed. 2018, 57(49), 15948–15982. DOI: 10.1002/anie.201803186.
  • Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112(2), 724–781. DOI: 10.1021/cr2003272.
  • He, M.; Sun, Y.; Han, B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew. Chem. Int. Ed. 2022, 61(15), e202112835. DOI: 10.1002/anie.202112835.
  • Truong, C. C.; Mishra, D. K. Catalyst-Free Fixation of Carbon Dioxide into Value-Added Chemicals: A Review. Environ. Chem. Lett. 2021, 19(2), 911–940. DOI: 10.1007/s10311-020-01121-7.
  • Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 2019, 361(2), 223–246. DOI: 10.1002/adsc.201801215.
  • Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120(16), 8468–8535. DOI: 10.1021/acs.chemrev.9b00685.
  • Jutz, F.; Andanson, J.-M.; Baiker, A. Ionic Liquids and Dense Carbon Dioxide: A Beneficial Biphasic System for Catalysis. Chem. Rev. 2011, 111(2), 322–353. DOI: 10.1021/cr100194q.
  • Hou, S.-L.; Dong, J.; Zhao, X.-Y.; Li, X.-S.; Ren, F.-Y.; Zhao, J.; Zhao, B. Thermocatalytic Conversion of CO2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2023, 62(34), e202305213. DOI: 10.1002/anie.202305213.
  • Song, Y.; Zhang, Y.; Chen, Z.; Wu, X. F. Recent Advances in Copper‐Catalyzed Carboxylation Reactions with CO2. Asian J. Org. Chem. 2022, 11(7), e202200237.
  • Vara Prasad, J. V. N. New Oxazolidinones. Curr. Opin. Microbiol. 2007, 10(5), 454–460. DOI: 10.1016/j.mib.2007.08.001.
  • Dyen, M. E.; Swern, D. 2-Oxazolidones. Chem. Rev. 1967, 67(2), 197–246. DOI: 10.1021/cr60246a003.
  • Zhang, C.-H.; Hu, T.-D.; Zhai, Y.-T.; Zhang, Y.-X.; Wu, Z.-L. Stepwise Engineering of the Pore Environment within Metal–Organic Frameworks for Green Conversion of CO2 and Propargylic Amines. Green Chem. 2023, 25(5), 1938–1947. DOI: 10.1039/D2GC04313K.
  • Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Cyclizative Atmospheric CO2 Fixation by Unsaturated Amines with t-BuOI Leading to Cyclic Carbamates. Org. Lett. 2012, 14(18), 4874–4877. DOI: 10.1021/ol302201q.
  • Fujita, K.-i.; Fujii, A.; Sato, J.; Onozawa, S.-y.; Yasuda, H. Synthesis of 2-Oxazolidinone by N-Heterocyclic Carbene-Catalyzed Carboxylative Cyclization of Propargylic Amine with CO2. Tetrahedron Lett. 2016, 57(11), 1282–1284. DOI: 10.1016/j.tetlet.2016.02.027.
  • Chen, Y.; Mu, T. Conversion of CO2 to Value-Added Products Mediated by Ionic Liquids. Green Chem. 2019, 21(10), 2544–2574. DOI: 10.1039/C9GC00827F.
  • Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Transformation of Atmospheric CO2 Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2-Oxazolidinones. Angew. Chem. Int. Ed. 2015, 54(18), 5399–5403. DOI: 10.1002/anie.201411969.
  • Du, M.; Gong, Y.; Bu, C.; Hu, J.; Zhang, Y.; Chen, C.; Chaemchuen, S.; Yuan, Y.; Verpoort, F. An Efficient and Recyclable AgNO3/Ionic Liquid System Catalyzed Atmospheric CO2 Utilization: Simultaneous Synthesis of 2-Oxazolidinones and α-Hydroxyl Ketones. J. Catal. 2021, 393, 70–82. DOI: 10.1016/j.jcat.2020.11.011.
  • Cao, C.-S.; Xia, S.-M.; Song, Z.-J.; Xu, H.; Shi, Y.; He, L.-N.; Cheng, P.; Zhao, B. Highly Efficient Conversion of Propargylic Amines and CO2 Catalyzed by Noble-Metal-Free [Zn116] Nanocages. Angew. Chem. Int. Ed. 2020, 59(22), 8586–8593. DOI: 10.1002/anie.201914596.
  • Das, R.; Nagaraja, C. M. Highly Efficient Fixation of Carbon Dioxide at RT and Atmospheric Pressure Conditions: Influence of Polar Functionality on Selective Capture and Conversion of CO2. Inorg. Chem. 2020, 59(14), 9765–9773. DOI: 10.1021/acs.inorgchem.0c00987.
  • Chang, Z.; Jing, X.; He, C.; Liu, X.; Duan, C. Silver Clusters as Robust Nodes and π–Activation Sites for the Construction of Heterogeneous Catalysts for the Cycloaddition of Propargylamines. ACS Catal. 2018, 8(2), 1384–1391. DOI: 10.1021/acscatal.7b02844.
  • Zhao, M.; Huang, S.; Fu, Q.; Li, W.; Guo, R.; Yao, Q.; Wang, F.; Cui, P.; Tung, C.-H.; Sun, D. Ambient Chemical Fixation of CO2 Using a Robust Ag27 Cluster-Based Two-Dimensional Metal–Organic Framework. Angew. Chem. Int. Ed. 2020, 59(45), 20031–20036. DOI: 10.1002/anie.202007122.
  • Gu, A.-L.; Wang, W.-T.; Cheng, X.-Y.; Hu, T.-D.; Wu, Z.-L. Non-Noble-Metal Metal–Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with Atmospheric Carbon Dioxide under Ambient Conditions. Inorg. Chem. 2021, 60(17), 13425–13433. DOI: 10.1021/acs.inorgchem.1c01776.
  • Zhou, Z. H.; Chen, K. H.; He, L. N. Efficient and Recyclable Cobalt(II)/Ionic Liquid Catalytic System for CO2 Conversion to Prepare 2-Oxazolinones at Atmospheric Pressure. Chin. J. Chem. 2019, 37(12), 1223–1228. DOI: 10.1002/cjoc.201900346.
  • Jiang, X. L.; Jiao, Y. E.; Hou, S. L.; Geng, L. C.; Wang, H. Z.; Zhao, B. Green Conversion of CO2 and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2021, 60(37), 20417–20423. DOI: 10.1002/anie.202106773.
  • Zhang, Y.; Lan, X.; Yan, F.; He, X.; Wang, J.; Ricardez-Sandoval, L.; Chen, L.; Bai, G. Controllable Encapsulation of Silver Nanoparticles by Porous Pyridine-Based Covalent Organic Frameworks for Efficient CO2 Conversion Using Propargylic Amines. Green Chem. 2022, 24(2), 930–940. DOI: 10.1039/D1GC04028F.
  • Zhou, Z.-G.; He, P.; Li, J.; Zhang, J.; Xu, G.; Zhang, S.-Y.; Deng, X.-X.; Du, Z.-Y.; Luo, G.-T.; Zhen, H.-Y.; et al. Integration of CO2 Capture, Activation, and Conversion with Ternary Acetylglucosyl 2-Methyl-imidazolium Modified Pd Catalyst. Org. Chem. Front. 2023, 10(8), 2045–2053. DOI: 10.1039/D3QO00067B.
  • Li, L.; Lv, Y.; Sheng, H.; Du, Y.; Li, H.; Yun, Y.; Zhang, Z.; Yu, H.; Zhu, M. A Low-Nuclear Ag4 Nanocluster as a Customized Catalyst for the Cyclization of Propargylamine with CO2. Nat. Commun. 2023, 14(1), 6989. DOI: 10.1038/s41467-023-42723-3.
  • Ma, S.-L.; Wu, Y.-T.; Hurrey, M. L.; Wallen, S. L.; Grant, C. S. Sugar Acetates as CO2-philes: Molecular Interactions and Structure Aspects from Absorption Measurement Using Quartz Crystal Microbalance. J. Phys. Chem. B 2010, 114(11), 3809–3817. DOI: 10.1021/jp9122634.
  • Raveendran, P.; Wallen, S. L. Sugar Acetates as Novel, Renewable CO2-Philes. J. Am. Chem. Soc. 2002, 124(25), 7274–7275. DOI: 10.1021/ja025508b.
  • Hu, X.-B.; Li, Y.-X.; Huang, K.; Ma, S.-L.; Yu, H.; Wu, Y.-T.; Zhang, Z.-B. Impact of α-D-Glucose Pentaacetate on the Selective Separation of CO2 and SO2 in Supported Ionic Liquid Membranes. Green Chem. 2012, 14(5), 1440–1446. DOI: 10.1039/c2gc35224a.
  • Raveendran, P.; Wallen, S. L. Cooperative C − H···O Hydrogen Bonding in CO2−Lewis Base Complexes: Implications for Solvation in Supercritical CO2. J. Am. Chem. Soc. 2002, 124(42), 12590–12599. DOI: 10.1021/ja0174635.
  • Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.; Fan, M.; Wang, J. New Copper(I)/DBU Catalyst System for the Carboxylative Cyclization of Propargylic Amines with Atmospheric CO2: An Experimental and Theoretical Study. ACS Sustainable Chem. Eng. 2016, 4(10), 5553–5560. DOI: 10.1021/acssuschemeng.6b01288.
  • Shunsuke, Y.; Kosuke, F.; Satoshi, K.; Tohru, Y. Silver-Catalyzed Preparation of Oxazolidinones from Carbon Dioxide and Propargylic Amines. Chem. Lett. 2009, 38(8), 786–787.
  • Yoshida, M.; Mizuguchi, T.; Shishido, K. Synthesis of Oxazolidinones by Efficient Fixation of Atmospheric CO2 with Propargylic Amines by Using a Silver/1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) Dual-Catalyst System. Chemistry 2012, 18(49), 15578–15581. DOI: 10.1002/chem.201203366.
  • Zhou, Z.-H.; Xia, S.-M.; Huang, S.-Y.; Huang, Y.-Z.; Chen, K.-H.; He, L.-N. Cobalt-Based Catalysis for Carboxylative Cyclization of Propargylic Amines with CO2 at Atmospheric Pressure. J. CO2 Util. 2019, 34, 404–410. DOI: 10.1016/j.jcou.2019.07.027.
  • Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. In Situ Generated Zinc(II) Catalyst for Incorporation of CO2 into 2-Oxazolidinones with Propargylic Amines at Atmospheric Pressure. ChemSusChem 2017, 10(6), 1210–1216. DOI: 10.1002/cssc.201601469.
  • Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. Valorization of CO2: Preparation of 2-Oxazolidinones by Metal–Ligand Cooperative Catalysis with SCS Indenediide Pd Complexes. ACS Catal. 2017, 7(4), 2652–2660. DOI: 10.1021/acscatal.7b00209.
  • Ghosh, S.; Molla, R. A.; Kayal, U.; Bhaumik, A.; Islam, S. M. Ag NPs Decorated on a COF in the Presence of DBU as an Efficient Catalytic System for the Synthesis of Tetramic Acids via CO2 Fixation into Propargylic Amines at Atmospheric Pressure. Dalton Trans. 2019, 48(14), 4657–4666. DOI: 10.1039/c9dt00017h.
  • Gu, A.-L.; Zhang, Y.-X.; Wu, Z.-L.; Cui, H.-Y.; Hu, T.-D.; Zhao, B. Highly Efficient Conversion of Propargylic Alcohols and Propargylic Amines with CO2 Activated by Noble-Metal-Free Catalyst Cu2O@ZIF-8. Angew. Chem. Int. Ed. 2022, 61(19), e202114817. DOI: 10.1002/anie.202114817.
  • Ghosh, S.; Riyajuddin, S.; Sarkar, S.; Ghosh, K.; Islam, S. M. Pd NPs Decorated on POPs as Recyclable Catalysts for the Synthesis of 2-Oxazolidinones from Propargylic Amines via Atmospheric Cyclizative CO2 Incorporation. ChemNanoMat 2020, 6(1), 160–172. DOI: 10.1002/cnma.201900505.
  • Hase, S.; Kayaki, Y.; Ikariya, T. Mechanistic Aspects of the Carboxylative Cyclization of Propargylamines and Carbon Dioxide Catalyzed by Gold(I) Complexes Bearing an N-Heterocyclic Carbene Ligand. ACS Catal. 2015, 5(9), 5135–5140. DOI: 10.1021/acscatal.5b01335.
  • Hase, S.; Kayaki, Y.; Ikariya, T. NHC–Gold(I) Complexes as Effective Catalysts for the Carboxylative Cyclization of Propargylamines with Carbon Dioxide. Organometallics 2012, 32(19), 5285–5288. DOI: 10.1021/om400949m.
  • Ghosh, S.; Ghosh, A.; Riyajuddin, S.; Sarkar, S.; Chowdhury, A. H.; Ghosh, K.; Islam, S. M., Silver Nanoparticles Architectured HMP as a Recyclable Catalyst for Tetramic Acid and Propiolic Acid Synthesis through CO2 Capture at Atmospheric Pressure. ChemCatChem 2020, 12(4), 1055–1067. DOI: 10.1002/cctc.201901461.
  • Wang, X.; Chang, Z.; Jing, X.; He, C.; Duan, C. Double-Helical Ag–S Rod-Based Porous Coordination Polymers with Double Activation: σ-Active and π-Active Functions. ACS Omega 2019, 4(6), 10828–10833. DOI: 10.1021/acsomega.9b00742.
  • Fujita, K.-i.; Inoue, K.; Sato, J.; Tsuchimoto, T.; Yasuda, H. Carboxylative Cyclization of Propargylic Amines with CO2 Catalyzed by Dendritic N-Heterocyclic Carbene–Gold(I) Complexes. Tetrahedron 2016, 72(9), 1205–1212. DOI: 10.1016/j.tet.2016.01.016.
  • Zhou, Z.-G.; Qiu, J.-B.; Xie, L.-F.; Du, F.; Xu, G.-H.; Xie, Y.-R.; Ling, Q.-D. Synthesis of Chiral Imidazolium Salts from a Carbohydrate and Their Application in Pd-Catalyzed Suzuki–Miyaura Reaction. Catal. Lett. 2014, 144(11), 1911–1918. DOI: 10.1007/s10562-014-1323-4.
  • Islam, S. S.; Biswas, S.; Ali Molla, R.; Yasmin, N.; Islam, S. M. Green Synthesized AgNPs Embedded in COF: An Efficient Catalyst for the Synthesis of 2‐Oxazolidinones and α-Alkylidene Cyclic Carbonates via CO2 fixation. ChemNanoMat 2020, 6(9), 1386–1397. DOI: 10.1002/cnma.202000284.
  • Cervantes-Reyes, A.; Saxl, T.; Stein, P. M.; Rudolph, M.; Rominger, F.; Asiri, A. M.; Hashmi, A. S. K. Expanded Ring NHC Silver Carboxylate Complexes as Efficient and Reusable Catalysts for the Carboxylative Cyclization of Unsubstituted Propargylic Derivatives. ChemSusChem 2021, 14(11), 2367–2374. DOI: 10.1002/cssc.202002822.
  • Fu, H. C.; You, F.; Li, H. R.; He, L. N. CO2 Capture and In Situ Catalytic Transformation. Front. Chem. 2019, 7, 525. DOI: 10.3389/fchem.2019.00525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.