110
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Role of MicroRNAs in Alcohol-Related Liver Disease

, , &

References

  • Babu, K. R., & Muckenthaler, M. U. (2019). MiR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Scientific Reports, 9(1), 1518. https://doi.org/10.1038/s41598-018-35947-7
  • Bala, S., Csak, T., Kodys, K., Catalano, D., Ambade, A., Furi, I., Lowe, P., Cho, Y., Iracheta-Vellve, A., & Szabo, G. (2017). Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. Journal of Leukocyte Biology, 102(2), 487–498. https://doi.org/10.1189/jlb.3A0716-310R
  • Bala, S., Csak, T., Saha, B., Zatsiorsky, J., Kodys, K., Catalano, D., Satishchandran, A., & Szabo, G. (2016). The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. Journal of Hepatology, 64(6), 1378–1387. https://doi.org/10.1016/j.jhep.2016.01.035
  • Bala, S., & Szabo, G. (2012). MicroRNA signature in alcoholic liver disease. International Journal of Hepatology, 2012, 498232. https://doi.org/10.1155/2012/498232
  • Beech, R. D., Leffert, J. J., Lin, A., Hong, K. A., Hansen, J., Umlauf, S., Mane, S., Zhao, H., & Sinha, R. (2014). Stress-related alcohol consumption in heavy drinkers correlates with expression of miR-10a, miR-21, and components of the TAR-RNA-binding protein-associated complex. Alcoholism, Clinical and Experimental Research, 38(11), 2743–2753. https://doi.org/10.1111/acer.12549
  • Brandon-Warner, E., Feilen, N. A., Culberson, C. R., Field, C. O., deLemos, A. S., Russo, M. W., & Schrum, L. W. (2016). Processing of miR17-92 cluster in hepatic stellate cells promotes hepatic fibrogenesis during alcohol-induced injury. Alcoholism, Clinical and Experimental Research, 40(7), 1430–1442. https://doi.org/10.1111/acer.13116
  • Cai, Y., Huang, G., Ma, L., Dong, L., Chen, S., Shen, X., Zhang, S., Xue, R., Sun, D., & Zhang, S. (2018). Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochimica et Biophysica Acta - Molecular Cell Research, 1865(2), 297–308. https://doi.org/10.1016/j.bbamcr.2017.10.011
  • Chen, X., Song, M., Chen, W., Dimitrova-Shumkovska, J., Zhao, Y., Cao, Y., Song, Y., Yang, W., Wang, F., Xiang, Y., & Yang, C. (2016). MicroRNA-21 contributes to liver regeneration by targeting PTEN. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, 83–91. https://doi.org/10.12659/msm.896157
  • Chen, Y., Wu, Z., Yuan, B., Dong, Y., Zhang, L., & Zeng, Z. (2018). MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death & Disease, 9(2), 22. https://doi.org/10.1038/s41419-017-0038-z
  • Chung, H. H. (2018). The multiple modulation of miR-122 in the attenuation of alcoholic liver disease. Gastroenterology, 154(6), 1857. https://doi.org/10.1053/j.gastro.2018.02.036
  • Cichoż-Lach, H., & Michalak, A. (2014). Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology: WJG, 20(25), 8082–8091. https://doi.org/10.3748/wjg.v20.i25.8082
  • Cong, S., Liu, Y., Li, Y., Chen, Y., Chen, R., Zhang, B., Yu, L., Hu, Y., Zhao, X., Mu, M., Cheng, M., & Huang, Z. (2021). MiR-571 affects the development and progression of liver fibrosis by regulating the Notch3 pathway. Scientific Reports, 11(1), 21854. https://doi.org/10.1038/s41598-021-00638-3
  • Correia, C. N., Nalpas, N. C., McLoughlin, K. E., Browne, J. A., Gordon, S. V., MacHugh, D. E., & Shaughnessy, R. G. (2017). Circulating microRnas as potential biomarkers of infectious disease. Frontiers in Immunology, 8, 118. https://doi.org/10.3389/fimmu.2017.00118
  • Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids–the mix of hormones and biomarkers. Nature Reviews Clinical Oncology, 8(8), 467–477. https://doi.org/10.1038/nrclinonc.2011.76
  • Dong, X., Liu, H., Chen, F., Li, D., & Zhao, Y. (2014). MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcoholism, Clinical and Experimental Research, 38(1), 68–77. https://doi.org/10.1111/acer.12209
  • Eguchi, A., Lazaro, R. G., Wang, J., Kim, J., Povero, D., Willliams, B., Ho, S. B., Stärkel, P., Schnabl, B., Ohno-Machado, L., Tsukamoto, H., & Feldstein, A. E. (2017). Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology, 65(2), 475–490. https://doi.org/10.1002/hep.28838
  • Farzaei, M. H., Zobeiri, M., Parvizi, F., & El-Senduny, F. F. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. 10(7), 855. https://doi.org/10.3390/nu10070855
  • Francis, H., McDaniel, K., Han, Y., Liu, X., Kennedy, L., Yang, F., McCarra, J., Zhou, T., Glaser, S., Venter, J., Huang, L., Levine, P., Lai, J. M., Liu, C. G., Alpini, G., & Meng, F. (2014). Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. The Journal of Biological Chemistry, 289(40), 27526–27539. https://doi.org/10.1074/jbc.M114.602383
  • Fründt, T., Krause, L., Hussey, E., Steinbach, B., Köhler, D., von Felden, J., Schulze, K., Lohse, A. W., Wege, H., & Schwarzenbach, H. (2021). Diagnostic and prognostic value of miR-16, miR-146a, miR-192 and miR-221 in exosomes of hepatocellular carcinoma and liver cirrhosis patients. Cancers, 13(10), 2484. https://doi.org/10.3390/cancers13102484
  • Gao, Y., Feng, B., Han, S., Lu, L., Chen, Y., Chu, X., Wang, R., & Chen, L. (2016). MicroRNA-129 in human cancers: From tumorigenesis to clinical treatment. Cellular Physiology & Biochemistry, 39(6), 2186–2202. https://doi.org/10.1159/000447913
  • Gonçalves, F. Z., Lizarte Neto, F. S., Novais, P. C., Gattas, D., Lourenço, L. G., de Carvalho, C. A. M., Tirapelli, D. P. C., Molina, C. A. F., Tirapelli, L. F., & Tucci Jr, S., Jr. (2018). Expression profile of endothelin receptors (ETA and ETB) and microRnas-155 and -199 in the corpus cavernosum of rats submitted to chronic alcoholism and diabetes mellitus. Brazilian Journal of Medical & Biological Research, 51(3), e6329. https://doi.org/10.1590/1414-431x20176329
  • Grewal, P., & Viswanathen, V. A. (2012). Liver cancer and alcohol. Clinics in Liver Disease, 16(4), 839–850. https://doi.org/10.1016/j.cld.2012.08.011
  • Gu, S., Lai, Y., Chen, H., Liu, Y., & Zhang, Z. (2017). Mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Scientific Reports, 7(1), 12155. https://doi.org/10.1038/s41598-017-06061-x
  • Han, W., Fu, X., Xie, J., Meng, Z., Gu, Y., Wang, X., Li, L., Pan, H., & Huang, W. (2015). MiR-26a enhances autophagy to protect against ethanol-induced acute liver injury. Journal of Molecular Medicine (Berlin, Germany), 93(9), 1045–1055. https://doi.org/10.1007/s00109-015-1282-2
  • Heo, M. J., Kim, T. H., You, J. S., Blaya, D., Sancho-Bru, P., & Kim, S. G. (2019). Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression. Gut, 68(4), 708–720. https://doi.org/10.1136/gutjnl-2017-315123
  • Huang, P. S., Liao, C. J., Huang, Y. H., Yeh, C.-T., Chen, C.-Y., Tang, H.-C., Chang, C.-C., & Lin, K.-H. (2021). Functional and clinical significance of dysregulated microRnas in liver cancer. Cancers, 13(21), 5361. https://doi.org/10.3390/cancers13215361
  • Huang, D. Q., Terrault, N. A., Tacke, F., Gluud, L. L., Arrese, M., Bugianesi, E., & Loomba, R. (2023). Global epidemiology of cirrhosis—aetiology, trends and predictions. Nature Reviews Gastroenterology & Hepatology, 20(6), 388–398. https://doi.org/10.1038/s41575-023-00759-2
  • Hu, S., Liu, Y.-M., Li, L.-Y., Zhang, B.-Y., Yang, J.-F., Li, H.-D., Meng, X.-M., Xu, T., & Zhou, H. (2020). MicroRNA-708 prevents ethanol-induced hepatic lipid accumulation and inflammatory reaction via direct targeting ZEB1. Life Sciences, 258, 118147. https://doi.org/10.1016/j.lfs.2020.118147
  • Iwagami, Y., Zou, J., Zhang, H., Cao, K., Ji, C., Kim, M., & Huang, C. K. (2018). Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. Journal of Cellular and Molecular Medicine, 22(8), 3987–3995. https://doi.org/10.1111/jcmm.13681
  • Jiang, X. P., Ai, W. B., Wan, L. Y., Zhang, Y. Q., & Wu, J. F. (2017). The roles of microRNA families in hepatic fibrosis. Cell & Bioscience, 7(1), 34. https://doi.org/10.1186/s13578-017-0161-7
  • Jiang, L. H., Zhang, H. D., & Tang, J. H. (2018). MiR-30a: A novel biomarker and potential therapeutic target for cancer. Journal of Oncology, 2018, 5167829. https://doi.org/10.1155/2018/5167829
  • Ji, J., Yamashita, T., & Wang, X. W. (2011). Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell & Bioscience, 1(1), 4. https://doi.org/10.1186/2045-3701-1-4
  • Kim, H. G., Cho, J. H., Kim, J., & Kim, S. J. (2021). The role of epigenetic changes in the progression of alcoholic steatohepatitis. Frontiers in Physiology, 12, 691738. https://doi.org/10.3389/fphys.2021.691738
  • Klieser, E., Mayr, C., Kiesslich, T., Wissniowski, T., Fazio, P. D., Neureiter, D., & Ocker, M. (2019). The crosstalk of miRNA and oxidative stress in the liver: From physiology to pathology and clinical implications. International Journal of Molecular Sciences, 20(21), 5266. https://doi.org/10.3390/ijms20215266
  • Kodama, T., Takehara, T., Hikita, H., Shimizu, S., Shigekawa, M., Tsunematsu, H., Li, W., Miyagi, T., Hosui, A., Tatsumi, T., Ishida, H., Kanto, T., Hiramatsu, N., Kubota, S., Takigawa, M., Tomimaru, Y., Tomokuni, A., Nagano, H. … Hayashi, N. (2011). Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. Journal of Clinical Investigation, 121(8), 3343–3356. https://doi.org/10.1172/jci44957
  • Kwon, J. J., Factora, T. D., Dey, S., & Kota, J. (2019). A systematic review of miR-29 in cancer. Molecular Therapy Oncolytics, 12, 173–194. https://doi.org/10.1016/j.omto.2018.12.011
  • Li, Y., Deng, X., Zeng, X., & Peng, X. (2016). The role of mir-148a in cancer. Journal of Cancer, 7(10), 1233–1241. https://doi.org/10.7150/jca.14616
  • Li, H. D., Du, X. S., Huang, H. M., Chen, X., Yang, Y., Huang, C., Meng, X. M., & Li, J. (2019). Noncoding RNAs in alcoholic liver disease. Journal of Cellular Physiology, 234(9), 14709–14720. https://doi.org/10.1002/jcp.28229
  • Li, Y., Guo, L., Hou, Z., Gong, H., Yan, M., & Zhang, B. (2021). Role of MicroRNA-155 in Triptolide-induced hepatotoxicity via the Nrf2-dependent pathway. Journal of Ethnopharmacology, 281, 114489. https://doi.org/10.1016/j.jep.2021.114489
  • Li, M., He, Y., Zhou, Z., Ramirez, T., Gao, Y., Gao, Y., Ross, R. A., Cao, H., Cai, Y., Xu, M., Feng, D., Zhang, P., Liangpunsakul, S., & Gao, B. (2017). MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47(phox)-oxidative stress pathway in neutrophils. Gut, 66(4), 705–715. https://doi.org/10.1136/gutjnl-2016-311861
  • Linna-Kuosmanen, S., Tomas Bosch, V., Moreau, P. R., Bouvy-Liivrand, M., Niskanen, H., Kansanen, E., Kivelä, A., Hartikainen, J., Hippeläinen, M., Kokki, H., Tavi, P., Levonen, A.-L., & Kaikkonen, M. U. (2021). NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovascular Research, 117(5), 1339–1357. https://doi.org/10.1093/cvr/cvaa219
  • Liu, J., Shi, W., Wu, C., Ju, J., & Jiang, J. (2014). miR-181b as a key regulator of the oncogenic process and its clinical implications in cancer (review). Biomedical Reports, 2(1), 7–11. https://doi.org/10.3892/br.2013.199
  • Li, J., Wang, Y., Yu, W., Chen, J., & Luo, J. (2011). Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochemical and Biophysical Research Communications, 406(1), 70–73. https://doi.org/10.1016/j.bbrc.2011.01.111
  • Lu, W. D., Zuo, Y., Xu, Z., & Zhang, M. (2015). MiR-19a promotes epithelial-mesenchymal transition through PI3K/AKT pathway in gastric cancer. World Journal of Gastroenterology: WJG, 21(15), 4564–4573. https://doi.org/10.3748/wjg.v21.i15.4564
  • Markovic, J., Sharma, A. D., & Balakrishnan, A. (2020). MicroRNA-221: A fine Tuner and potential biomarker of chronic liver injury. Cells, 9(8), 1767. https://doi.org/10.3390/cells9081767
  • Marques-Rocha, J. L., Samblas, M., Milagro, F. I., Bressan, J., Martínez, J. A., & Marti, A. (2015). Noncoding RNAs, cytokines, and inflammation-related diseases. Federation of American Societies for Experimental Biology Journal, 29(9), 3595–3611. https://doi.org/10.1096/fj.14-260323
  • Matsuura, K., Aizawa, N., Enomoto, H., Nishiguchi, S., Toyoda, H., Kumada, T., Iio, E., Ito, K., Ogawa, S., Isogawa, M., Alter, H. J., & Tanaka, Y. (2018). Circulating let-7 levels in serum correlate with the severity of hepatic fibrosis in chronic hepatitis C. Open Forum Infectious Diseases, 5(11), ofy268. https://doi.org/10.1093/ofid/ofy268
  • McDaniel, K., Herrera, L., Zhou, T., Francis, H., Han, Y., Levine, P., Lin, E., Glaser, S., Alpini, G., & Meng, F. (2014). The functional role of microRnas in alcoholic liver injury. Journal of Cellular and Molecular Medicine, 18(2), 197–207. https://doi.org/10.1111/jcmm.12223
  • McDaniel, K., Huang, L., Sato, K., Wu, N., Annable, T., Zhou, T., Ramos-Lorenzo, S., Wan, Y., Huang, Q., Francis, H., Glaser, S., Tsukamoto, H., Alpini, G., & Meng, F. (2017). The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. The Journal of Biological Chemistry, 292(27), 11336–11347. https://doi.org/10.1074/jbc.M116.773291
  • Meng, F., Glaser, S. S., Francis, H., Yang, F., Han, Y., Stokes, A., Staloch, D., McCarra, J., Liu, J., Venter, J., Zhao, H., Liu, X., Francis, T., Swendsen, S., Liu, C. G., Tsukamoto, H., & Alpini, G. (2012). Epigenetic regulation of miR-34a expression in alcoholic liver injury. The American Journal of Pathology, 181(3), 804–817. https://doi.org/10.1016/j.ajpath.2012.06.010
  • Meroni, M., Longo, M., Rametta, R., & Dongiovanni, P. (2018). Genetic and epigenetic modifiers of alcoholic liver disease. International journal of molecular sciences, 19(12). https://doi.org/10.3390/ijms19123857
  • Momen-Heravi, F., Catalano, D., Talis, A., Szabo, G., & Bala, S. (2021). Protective effect of LNA-anti-miR-132 therapy on liver fibrosis in mice. Molecular Therapy Nucleic Acids, 25, 155–167. https://doi.org/10.1016/j.omtn.2021.05.007
  • Morishita, A., Oura, K., Tadokoro, T., Fujita, K., Tani, J., & Masaki, T. (2021). MicroRNAs in the pathogenesis of hepatocellular carcinoma: A review. Cancers, 13(3), 514. https://doi.org/10.3390/cancers13030514
  • Natarajan, S. K., Pachunka, J. M., & Mott, J. L. (2015). Role of microRnas in alcohol-induced multi-organ injury. Biomolecules, 5(4), 3309–3338. https://doi.org/10.3390/biom5043309
  • Ning, Z. W., Luo, X. Y., Wang, G. Z., Li, Y., Pan, M. X., Yang, R. Q., Ling, X. G., Huang, S., Ma, X. X., Jin, S. Y., Wang, D., & Li, X. (2017). MicroRNA-21 mediates angiotensin II-Induced liver fibrosis by activating NLRP3 inflammasome/IL-1β axis via targeting Smad7 and Spry1. Antioxidants & Redox Signaling, 27(1), 1–20. https://doi.org/10.1089/ars.2016.6669
  • Oura, K., & Morishita, A. (2020). Molecular and functional roles of MicroRNAs in the progression of hepatocellular carcinoma—A review. 21(21), 8362. https://doi.org/10.3390/ijms21218362
  • Parrish, A., Srivastava, A., Juskeviciute, E., Hoek, J. B., & Vadigepalli, R. (2021). Dysregulation of miR-21-associated miRNA regulatory networks by chronic ethanol consumption impairs liver regeneration. Physiological Genomics, 53(12), 546–555. https://doi.org/10.1152/physiolgenomics.00113.2021
  • Peregud, D. I., Baronets, V. Y., Lobacheva, A. S., Ivanov, A. S., Arisheva, O. S., Garmash, I. V., Kobalava, Z. D., Pirozhkov, S. V., & Terebilina, N. N. (2021). PNPLA3 rs738409 associates with alcoholic liver cirrhosis but not with serum levels of IL6, IL10, IL8 or CCL2 in the Russian population. Annals of Hepatology, 20, 100247. https://doi.org/10.1016/j.aohep.2020.08.065
  • Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., & Dejean, A. (2010). Overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 264–269. https://doi.org/10.1073/pnas.0907904107
  • Pingitore, P., & Romeo, S. (2019). The role of PNPLA3 in health and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864(6), 900–906. https://doi.org/10.1016/j.bbalip.2018.06.018
  • Ren, R., Wang, Z., Wu, M., & Wang, H. (2020). Emerging roles of SIRT1 in alcoholic liver disease. International Journal of Biological Sciences, 16(16), 3174–3183. https://doi.org/10.7150/ijbs.49535
  • Rezzani, R., & Franco, C. (2021). Liver, oxidative stress and metabolic syndromes. Nutrients, 13(2), 301. https://doi.org/10.3390/nu13020301
  • Robinson, M. W., Harmon, C., & O’Farrelly, C. (2016). Liver immunology and its role in inflammation and homeostasis. Cellular & Molecular Immunology, 13(3), 267–276. https://doi.org/10.1038/cmi.2016.3
  • Roderburg, C., Mollnow, T., Bongaerts, B., Elfimova, N., Vargas Cardenas, D., Berger, K., Zimmermann, H., Koch, A., Vucur, M., Luedde, M., Hellerbrand, C., Odenthal, M., Trautwein, C., Tacke, F., Luedde, T., & Lafrenie, R. (2012). Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One, 7(3), e32999. https://doi.org/10.1371/journal.pone.0032999
  • Roderburg, C., Urban, G. W., Bettermann, K., Vucur, M., Zimmermann, H., Schmidt, S., Janssen, J., Koppe, C., Knolle, P., Castoldi, M., Tacke, F., Trautwein, C., & Luedde, T. (2011). Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 53(1), 209–218. https://doi.org/10.1002/hep.23922
  • Saad, M. A., Kuo, S. Z., Rahimy, E., Zou, A. E., Korrapati, A., Rahimy, M., Kim, E., Zheng, H., Yu, M. A., Wang-Rodriguez, J., & Ongkeko, W. M. (2015). Alcohol-dysregulated miR-30a and miR-934 in head and neck squamous cell carcinoma. Molecular Cancer, 14(1), 181. https://doi.org/10.1186/s12943-015-0452-8
  • Saikia, P., Bellos, D., McMullen, M. R., Pollard, K. A., de la Motte, C., & Nagy, L. E. (2017). MicroRNA 181b-3p and its target importin α5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology, 66(2), 602–615. https://doi.org/10.1002/hep.29144
  • Sarkar, N., & Chakravarty, R. (2015). Hepatitis B virus infection, MicroRNAs and liver disease. International Journal of Molecular Sciences, 16(8), 17746–17762. https://doi.org/10.3390/ijms160817746
  • Satishchandran, A., Ambade, A., Rao, S., Hsueh, Y.-C., Iracheta-Vellve, A., Tornai, D., Lowe, P., Gyongyosi, B., Li, J., & Catalano, D. (2018). MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology, 154(1), 238–252. e237. https://doi.org/10.1053/j.gastro.2017.09.022
  • Sekiya, Y., Ogawa, T., Yoshizato, K., Ikeda, K., & Kawada, N. (2011). Suppression of hepatic stellate cell activation by microRNA-29b. Biochemical and Biophysical Research Communications, 412(1), 74–79. https://doi.org/10.1016/j.bbrc.2011.07.041
  • Shatoor, A. S., Al Humayed, S., & Almohiy, H. M. (2022). Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. Journal of Physiology and Biochemistry, 78(1), 151–168. https://doi.org/10.1007/s13105-021-00850-9
  • Shen, Q., Bae, H. J., Eun, J. W., Kim, H. S., Park, S. J., Shin, W. C., Lee, E. K., Park, S., Park, W. S., Lee, J. Y., & Nam, S. W. (2014). MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Letters, 344(2), 204–211. https://doi.org/10.1016/j.canlet.2013.10.030
  • Shen, K., Cao, Z., Zhu, R., You, L., & Zhang, T. (2019). The dual functional role of MicroRNA-18a (miR-18a) in cancer development. Clinical and Translational Medicine, 8(1), 32. https://doi.org/10.1186/s40169-019-0250-9
  • Soliman, S. E., Elabd, N. S., El-Kousy, S. M., & Awad, M. F. (2021). Down regulation of miR-30a-5p and miR-182-5p in gastric cancer: Clinical impact and survival analysis. Biochemistry and Biophysics Reports, 27, 101079. https://doi.org/10.1016/j.bbrep.2021.101079
  • Song, J., Ouyang, Y., Che, J., Li, X., Zhao, Y., Yang, K., Zhao, X., Chen, Y., Fan, C., & Yuan, W. (2017). Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Frontiers in Immunology, 8, 56. https://doi.org/10.3389/fimmu.2017.00056
  • Song, G., Sharma, A. D., Roll, G. R., Ng, R., Lee, A. Y., Blelloch, R. H., Frandsen, N. M., & Willenbring, H. (2010). MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology, 51(5), 1735–1743. https://doi.org/10.1002/hep.23547
  • Stowell, R. E., Lee, C. S., Tsuboi, K. K., & Villasana, A. (1951). Histochemical and microchemical changes in experimental cirrhosis and hepatoma formation in mice by carbon tetrachloride. Cancer Research, 11(5), 345–354.
  • Sun, J., Fu, J., Li, L., Chen, C., Wang, H., Hou, Y., Xu, Y., & Pi, J. (2018). Nrf2 in alcoholic liver disease. Toxicol Appl Pharmacol, 357, 62–69. https://doi.org/10.1016/j.taap.2018.08.019
  • Tadokoro, T., Morishita, A., & Masaki, T. (2021). Diagnosis and therapeutic management of liver fibrosis by MicroRNA. International Journal of Molecular Sciences, 22(15), 8139. https://doi.org/10.3390/ijms22158139
  • Tang, Y., Zhang, L., Forsyth, C. B., Shaikh, M., Song, S., & Keshavarzian, A. (2015). The role of miR-212 and iNOS in alcohol-induced intestinal barrier dysfunction and steatohepatitis. Alcoholism, Clinical and Experimental Research, 39(9), 1632–1641. https://doi.org/10.1111/acer.12813
  • Tezcan, G., Martynova, E. V., Gilazieva, Z. E., McIntyre, A., Rizvanov, A. A., & Khaiboullina, S. F. (2019). MicroRNA post-transcriptional regulation of the NLRP3 Inflammasome in immunopathologies. Frontiers in Pharmacology, 10, 451. https://doi.org/10.3389/fphar.2019.00451
  • Tian, C., Stokowski, R. P., Kershenobich, D., Ballinger, D. G., & Hinds, D. A. (2010). Variant in PNPLA3 is associated with alcoholic liver disease. Nature Genetics, 42(1), 21–23. https://doi.org/10.1038/ng.488
  • Tiraboschi, R. B., Neto, F. S. L., da Cunha Tirapelli, D. P., de Bessa, J., Jr., Miranda, E. P., de Assis Cirino, M. L., Tirapelli, L. F., Tucci, S., Jr., & Molina, C. A. F. (2021). Expression of MicroRNAs (miR-15b, miR-16, miR-138, miR-221, and miR-222) as biomarkers of endothelial corpus cavernosum dysfunction in a diabetic alcoholic murine model. Sexual Medicine, 9(2), 100326. https://doi.org/10.1016/j.esxm.2021.100326
  • Tonon, M., & Piano, S. (2021). Alcohol-related cirrhosis: The most challenging etiology of cirrhosis is more burdensome than ever. Clinical and Molecular Hepatology, 27(1), 94–96. https://doi.org/10.3350/cmh.2020.0305
  • Torres, J. L., Novo-Veleiro, I., Manzanedo, L., Alvela-Suárez, L., Macías, R., Laso, F. J., & Marcos, M. (2018). Role of microRnas in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World Journal of Gastroenterology: WJG, 24(36), 4104–4118. https://doi.org/10.3748/wjg.v24.i36.4104
  • Wanet, A., Tacheny, A., Arnould, T., & Renard, P. (2012). Expression and functions: Within and beyond the neuronal compartment. Nucleic Acids Research, 40(11), 4742–4753. https://doi.org/10.1093/nar/gks151
  • Wang, X. W., Heegaard, N. H., & Orum, H. (2012). MicroRNAs in liver disease. Gastroenterology, 142(7), 1431–1443. https://doi.org/10.1053/j.gastro.2012.04.007
  • Wang, X., He, Y., Mackowiak, B., & Gao, B. (2021). MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 70(4), 784–795. https://doi.org/10.1136/gutjnl-2020-322526
  • Wang, B., Hsu, S. H., Majumder, S., Kutay, H., Huang, W., Jacob, S. T., & Ghoshal, K. (2010). Tgfbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 29(12), 1787–1797. https://doi.org/10.1038/onc.2009.468
  • Wang, H., Li, X., Li, T., Wang, L., Wu, X., Liu, J., Xu, Y., & Wei, W. (2019). Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncology Letters, 18(5), 5033–5042. https://doi.org/10.3892/ol.2019.10862
  • Wang, W., Zhong, G. Z., Long, K. B., Liu, Y., Liu, Y. Q., & Xu, A. L. (2021). Silencing miR-181b-5p upregulates PIAS1 to repress oxidative stress and inflammatory response in rats with alcoholic fatty liver disease through inhibiting PRMT1. International Immunopharmacology, 101(Pt B), 108151. https://doi.org/10.1016/j.intimp.2021.108151
  • Wan, Y., McDaniel, K., Wu, N., Ramos-Lorenzo, S., Glaser, T., Venter, J., Francis, H., Kennedy, L., Sato, K., Zhou, T., Kyritsi, K., Huang, Q., Annable, T., Wu, C., Glaser, S., Alpini, G., & Meng, F. (2017). Regulation of cellular senescence by miR-34a in alcoholic liver injury. The American Journal of Pathology, 187(12), 2788–2798. https://doi.org/10.1016/j.ajpath.2017.08.027
  • Xiong, J., Ni, J., Chen, C., & Wang, K. (2020). miR‑148a‑3p regulates alcoholic liver fibrosis through targeting ERBB3. International Journal of Molecular Medicine, 46(3), 1003–1012. https://doi.org/10.3892/ijmm.2020.4655
  • Xu, B., Shen, J., Li, D., Ning, B., Guo, L., Bing, H., Chen, J., & Li, Y. (2020). Overexpression of microRNA-9 inhibits 3T3-L1 cell adipogenesis by targeting PNPLA3 via activation of AMPK. Gene, 730, 144260. https://doi.org/10.1016/j.gene.2019.144260
  • Yang, Y. M., Cho, Y. E., & Hwang, S. (2022). Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. 23(2), 774. https://doi.org/10.3390/ijms23020774
  • Yang, J. J., Tao, H., Hu, W., Liu, L. P., Shi, K. H., Deng, Z. Y., & Li, J. (2014). MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cellular Signalling, 26(11), 2381–2389. https://doi.org/10.1016/j.cellsig.2014.07.016
  • Yeligar, S., Tsukamoto, H., & Kalra, V. K. (2009). Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1alpha and microrNA-199. Journal of Immunology (Baltimore, Md: 1950), 183(8), 5232–5243. https://doi.org/10.4049/jimmunol.0901084
  • Ye, J., Lin, Y., Yu, Y., & Sun, D. (2020). LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis. Journal of Translational Medicine, 18(1), 445. https://doi.org/10.1186/s12967-020-02577-5
  • Ye, D., Zhang, T., Lou, G., & Liu, Y. (2018). Role of miR-223 in the pathophysiology of liver diseases. Experimental & Molecular Medicine, 50(9), 1–12. https://doi.org/10.1038/s12276-018-0153-7
  • Yin, H., Hu, M., Zhang, R., Shen, Z., Flatow, L., & You, M. (2012). MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. The Journal of Biological Chemistry, 287(13), 9817–9826. https://doi.org/10.1074/jbc.M111.333534
  • Yin, H., Liang, X., Jogasuria, A., Davidson, N. O., & You, M. (2015a). Regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1–Lipin-1 signaling. The American Journal of Pathology, 185(5), 1286–1296. https://doi.org/10.1016/j.ajpath.2015.01.030
  • Yin, H., Liang, X., Jogasuria, A., Davidson, N. O., & You, M. (2015b). Regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. The American Journal of Pathology, 185(5), 1286–1296. https://doi.org/10.1016/j.ajpath.2015.01.030
  • Yuan, B. Y., Chen, Y. H., Wu, Z. F., Zhuang, Y., Chen, G. W., Zhang, L., Zhang, H. G., Cheng, J. C., Lin, Q., & Zeng, Z. C. (2019). MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling. Radiation Research, 192(6), 621–629. https://doi.org/10.1667/rr15401.1
  • Zhang, J., Li, D., Zhang, R., Gao, P., Peng, R., & Li, J. (2020). The miR-21 potential of serving as a biomarker for liver diseases in clinical practice. Biochemical Society Transactions, 48(5), 2295–2305. https://doi.org/10.1042/bst20200653
  • Zhang, Y., Long, X., Ruan, X., Wei, Q., Zhang, L., Wo, L., Huang, D., Lin, L., Wang, D., Xia, L., Zhao, Q., Liu, J., Zhao, Q., & He, M. (2021). SIRT2-mediated deacetylation and deubiquitination of C/EBPβ prevents ethanol-induced liver injury. Cell Discovery, 7(1), 93. https://doi.org/10.1038/s41421-021-00326-6
  • Zhang, M., Wu, J., Zhang, R., Yang, J., Zhang, Q., & Liu, B. (2019). Inhibits the carcinogenesis of hepatocellular carcinoma by targeting the Rictor/akt signal pathway. International Journal of Clinical and Experimental Pathology, 12(6), 1992–2000.
  • Zhao, Y. X., Sun, Y. Y., Huang, A. L., Li, X. F., Huang, C., Ma, T. T., & Li, J. (2018). MicroRNA-200a induces apoptosis by targeting ZEB2 in alcoholic liver disease. Cell cycle, 17(2), 250–262. https://doi.org/10.1080/15384101.2017.1417708
  • Zhou, X., Liang, Z., Qin, S., Ruan, X., & Jiang, H. (2022). Serum-derived miR-574-5p-containing exosomes contribute to liver fibrosis by activating hepatic stellate cells. Molecular Biology Reports, 49(3), 1945–1954. https://doi.org/10.1007/s11033-021-07008-2
  • Zou, Y., Cai, Y., Lu, D., Zhou, Y., Yao, Q., & Zhang, S. (2017). MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cellular Signalling, 39, 1–8. https://doi.org/10.1016/j.cellsig.2017.07.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.