358
Views
0
CrossRef citations to date
0
Altmetric
Articles

New Tools for the Management of Fungal Pathogens in Extensive Cropping Systems for Friendly Environments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abid, M., Khan, M. A. U., Mushtaq, S., Afzaal, S., and Haider, M. S. 2018. A comprehensive review on mycoviruses as biological control agent. World J. Biol. Biotechnol. 3:187. doi:10.33865/wjb.003.02.0146
  • Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C. O., Kala, S., Kryeziu, T. L., Ifemeje, J. C., and Patrick-Iwuanyanwu, K. C. 2020. Pesticides, History, and Classification. In Natural Remedies for Pest, Disease and Weed Control p. 29–42. Elsevier. doi:10.1016/B978-0-12-819304-4.00003-8
  • Adhikari, B., Pangomm, K., Veerana, M., Mitra, S., and Park, G. 2020. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 11:77. doi:10.3389/fpls.2020.00077.
  • Afzal, I., Shinwari, Z. K., Sikandar, S., and Shahzad, S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 221:36–49. doi:10.1016/j.micres.2019.02.001.
  • Agostini, R. B., Ariel, F., Rius, S. P., Vargas, W. A., and Campos-Bermudez, V. A. 2023. Trichoderma root colonization in maize triggers epigenetic changes in genes related to the jasmonic and salicylic acid pathways that prime defenses against Colletotrichum graminicola leaf infection. J. Exp. Bot. 74:2016–2028. doi:10.1093/jxb/erac518.
  • Ahammed, G. J., and Yang, Y. 2021. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiol. Biochem. 165:200–206. doi:10.1016/j.plaphy.2021.05.031.
  • Ahmed, S., Abd El-Aziz, G., Abou-Zeid, M., and Fahmy, A. 2019. Environmental Impact of The Use of Some Eco-friendly Natural Fungicides to Resist Rust Disease in Wheat. Catrina: The International Journal of Environmental Sciences 18:87–95. doi:10.21608/cat.2019.28611
  • Ahmed, T., Luo, J., Noman, M., Ijaz, M., Wang, X., Masood, H. A., Manzoor, N., Wang, Y., and Li, B. 2023. Microbe-mediated nanoparticle intervention for the management of plant diseases. Crop Health 1:3. doi:10.1007/s44297-023-00006-9
  • Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Alameri, A. A., and El-Zumair, M. A. A. 2022. Economic and Eco-friendly Alternatives for the Efficient and Safe Management of Wheat Diseases. In Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management (p. 183–202. Springer Nature Singapore. doi:10.1007/978-981-19-3120-8_10
  • Anwer, A. 2017. Biopesticides and Bioagents (A. Anwer, Ed.; First Edition). Apple Academic Press. doi:10.1201/9781315365558
  • Asad, S. A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases-A review. Ecol. Complexity 49:100978. doi:10.1016/j.ecocom.2021.100978
  • Asaturova, A., Zhevnova, N., Tomashevich, N., Pavlova, M., Kremneva, O., Volkova, G., and Sidorov, N. 2022. Efficacy of New Local Bacterial Agents against Pyrenophora tritici-repentis in Kuban Region, Russia. Agronomy 12:373. doi:10.3390/agronomy12020373
  • Avellan, A., Yun, J., Morais, B. P., Clement, E. T., Rodrigues, S. M., and Lowry, G. V. 2021. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. Environ. Sci. Technol. 55:13417–13431. doi:10.1021/acs.est.1c00178.
  • Bauza-Kaszewska, J., Breza-Boruta, B., Lemańczyk, G., and Lamparski, R. 2022. Effects of Eco-Friendly Product Application and Sustainable Agricultural Management Practices on Soil Properties and Phytosanitary Condition of Winter Wheat Crops. Sustainability 14:15754. doi:10.3390/su142315754
  • Bi, W., Liu, J., Li, Y., He, Z., Chen, Y., Zhao, T., Liang, X., Wang, X., Meng, X., Dou, D., and Xu, G. 2023. CRISPR/Cas9-guided editing of a novel susceptibility gene in potato improves Phytophthora resistance without growth penalty. Plant Biotechnol. J. doi:10.1111/pbi.14175.
  • Bloem, E., Haneklaus, S., and Schnug, E. 2014. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Front. Plant Sci. 5:779. doi:10.3389/fpls.2014.00779.
  • Borriss, R., Wu, H., and Gao, X. 2019. Secondary Metabolites of the Plant Growth Promoting Model Rhizobacterium Bacillus velezensis FZB42 Are Involved in Direct Suppression of Plant Pathogens and in Stimulation of Plant-Induced Systemic Resistance. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms (p. 147–168. Springer Singapore. doi:10.1007/978-981-13-5862-3_8
  • Brauer, E. K., Balcerzak, M., Rocheleau, H., Leung, W., Schernthaner, J., Subramaniam, R., and Ouellet, T. 2020. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. Mol. Plant. Microbe Interact. 33:553–560. doi:10.1094/MPMI-11-19-0332-R.
  • Brown, P., and Saa, S. 2015. Biostimulants in agriculture. Front. Plant Sci. 6:671. doi:10.3389/fpls.2015.00671.
  • Cao, Y., Wang, Y., Gui, C., Nguvo, K. J., Ma, L., Wang, Q., Shen, Q., Zhang, R., and Gao, X. 2023. Beneficial rhizobacterium triggers induced systemic resistance of maize to Gibberella stalk rot via calcium signaling. Mpmi. 36:516–528. doi:10.1094/MPMI-08-22-0173-R
  • Caradonia, F., Battaglia, V., Righi, L., Pascali, G., and La Torre, A. 2019. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 38:438–448. doi:10.1007/s00344-018-9853-4
  • Carmona, M. A., Sautua, F. J., Grijalba, P. E., Cassina, M., and Pérez‐Hernández, O. 2018. Effect of potassium and manganese phosphites in the control of Pythium damping-off in soybean: a feasible alternative to fungicide seed treatments. Pest Manag. Sci. 74:366–374. doi:10.1002/ps.4714
  • Carmona, M. A., Sautua, F. J., and Pérez-Hernández, O. 2019. Copper phosphite enhances efficacy of a strobilurin-triazole fungicide in controlling late season foliar diseases of soybean. Crop Prot. 115:130–134. doi:10.1016/j.cropro.2018.09.019
  • Carmona, M. A., Sautua, F. J., Pérez-Hérnandez, O., and Reis, E. M. 2020. Role of Fungicide Applications on the Integrated Management of Wheat Stripe Rust. Front. Plant Sci. 11:733. doi:10.3389/fpls.2020.00733.
  • Carmona, M. A., Simonetti, E., Ravotti, M. E., Scandiani, M. M., Luque, A. G., Formento, N. A., Sautua, F. 2017. In vitro antifungal/fungistatic activity of manganese phosphite against soybean soil-borne pathogens. Phyton 86:265–269.
  • Carmona, M., Ferrazini, M., and Barreto, D. 2006. Tan spot of wheat caused by Drechslera tritici-repentis : Detection, transmission, and control in wheat seed. Cereal Res. Commun. 34:1043–1049. doi:10.1556/CRC.34.2006.2-3.236
  • Carmona, M., Sautua, F., and Reis, E. M. 2014. Control de enfermedades fúngicas del trigo mediante fungicidas. In C. A. Cordo and M. N. Sisterna (Eds.), Enfermedades Del Trigo: avances Científico en la Argentina. (p. 349–370. Editorial de la Universidad Nacional de La Plata (EDULP).
  • Chalfoun, N. R., Durman, S. B., González-Montaner, J., Reznikov, S., De Lisi, V., González, V., Moretti, E. R., Devani, M. R., Ploper, L. D., Castagnaro, A. P., and Welin, B. 2018. Elicitor-Based Biostimulant PSP1 Protects Soybean Against Late Season Diseases in Field Trials. Front. Plant Sci. 9:763. doi:10.3389/fpls.2018.00763.
  • Chaloner, T. M., Gurr, S. J., and Bebber, D. P. 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 11:710–715. doi:10.1038/s41558-021-01104-8
  • Chaudhuri, A., Halder, K., and Datta, A. 2022. Classification of CRISPR/Cas system and its application in tomato breeding. Theor. Appl. Genet. 135:367–387. doi:10.1007/s00122-021-03984-y.
  • Chen, P. J., and Liu, D. R. 2023. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24:161–177. doi:10.1038/s41576-022-00541-1.
  • Chen, Y.-H., Lu, J., Yang, X., Huang, L.-C., Zhang, C.-Q., Liu, Q.-Q., and Li, Q.-F. 2023. Gene editing of non-coding regulatory DNA and its application in crop improvement. J Exp Bot doi:10.1093/jxb/erad313.
  • Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M. C., and Rouphael, Y. 2018. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 9:1782. doi:10.3389/fpls.2018.01782.
  • Chincinska, I. A., Miklaszewska, M., and Sołtys-Kalina, D. 2023. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta 257:25. doi:10.1007/s00425-022-04054-3
  • Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., and Rouphael, Y. 2017. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 8:2202. doi:10.3389/fpls.2017.02202.
  • Conte, E. D., Dal Magro, T., Carlos Dal Bem, L., Claudio Dalmina, J., Andolfato Matté, J., Osmar Schenkel, V., and Schwambach, J. 2022. Use of Trichoderma spp. in no-tillage system: Effect on soil and soybean crop. Biol. Control 171:104941. doi:10.1016/j.biocontrol.2022.104941
  • Czajkowski, R., Maciag, T., Krzyzanowska, D. M., and Jafra, S. 2020. Biological Control Based on Microbial Consortia – from Theory to Commercial Products (p. 183–202. doi:10.1007/978-3-030-53238-3_12
  • da Silva Junior, M. B., de Resende, M. L. V., Pozza, E. A., Resende, A. R., Vasconcelos, V. A. M., Monteiro, A. C. A., Silveira, G. C. D., and dos Santos Botelho, D. M. 2021. Phosphites for the management of anthracnose in soybean pods. J. Plant Pathol. 103:611–617. doi:10.1007/s42161-021-00747-y
  • d., Silva, M. S., dos Santos, B., d., Silva, C., d., Silva, C., Antunes, L., dos Santos, R., Santos, C., and Rigobelo, E. 2021. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front. Microbiol. 12:719653. doi:10.3389/fmicb.2021.719653.
  • d., Silva, M. S., Huertas Tavares, O. C., Ribeiro, T. G., d., Silva, C., d., Silva, C., García-Mina, J. M., Baldani, V. L. D., Calderín García, A., Berbara, R. L. L., and Jesus, E. C. 2021. Humic acids enrich the plant microbiota with bacterial candidates for the suppression of pathogens. Appl. Soil Ecol. 168:104146. doi:10.1016/j.apsoil.2021.104146
  • Das, A., Sharma, N., and Prasad, M. 2018. CRISPR/Cas9: A Novel Weapon in the Arsenal to Combat Plant Diseases. Front. Plant Sci. 9:2008. doi:10.3389/fpls.2018.02008.
  • de Borba, M. C., Velho, A. C., de Freitas, M. B., Holvoet, M., Maia-Grondard, A., Baltenweck, R., Magnin-Robert, M., Randoux, B., Hilbert, J.-L., Reignault, P., Hugueney, P., Siah, A., and Stadnik, M. J. 2022. A Laminarin-Based Formulation Protects Wheat Against Zymoseptoria tritici via Direct Antifungal Activity and Elicitation of Host Defense-Related Genes. Plant Dis. 106:1408–1418. doi:10.1094/PDIS-08-21-1675-RE.
  • De Schutter, K., Taning, C. N. T., Van Daele, L., Van Damme, E. J. M., Dubruel, P., and Smagghe, G. 2022. RNAi-Based Biocontrol Products: Market Status, Regulatory Aspects, and Risk Assessment. Front. Insect Sci. 1:. doi:10.3389/finsc.2021.818037
  • Del Buono, D., Luzi, F., and Puglia, D. 2021. Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. Nanomaterials (Basel) 11:846. doi:10.3390/nano11040846.
  • Deresa, E. M., and Diriba, T. F. 2023. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9:e13810. doi:10.1016/j.heliyon.2023.e13810.
  • Desai, P., Jha, A., Markande, A., and Patel, J. 2021. Silver Nanoparticles as a Fungicide against Soil-Borne Sclerotium Rolfsii: A Case Study for Wheat Plants (513–542. doi:10.1007/978-3-030-61985-5_18
  • Dikhoba, P. M., Mongalo, N. I., Elgorashi, E. E., and Makhafola, T. J. 2019. Antifungal and anti-mycotoxigenic activity of selected South African medicinal plants species. Heliyon 5:e02668. doi:10.1016/j.heliyon.2019.e02668.
  • Dimkić, I., Janakiev, T., Petrović, M., Degrassi, G., and Fira, D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review. Physiol. Mol. Plant Pathol. 117:101754. doi:10.1016/j.pmpp.2021.101754
  • Dorneles, K. R., Pazdiora, P. C., Hoffmann, J. F., Chaves, F. C., Monte, L. G., Rodrigues, F. A., and Dallagnol, L. J. 2018. Wheat leaf resistance to Pyrenophora tritici-repentis induced by silicon activation of phenylpropanoid metabolism. Plant Pathol. 67:1713–1724. doi:10.1111/ppa.12876
  • Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196:3–14. doi:10.1016/j.scienta.2015.09.021
  • Dutilloy, E., Oni, F. E., Esmaeel, Q., Clément, C., and Barka, E. A. 2022. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 8:632. doi:10.3390/jof8060632.
  • Dutta, P., Kumari, A., Mahanta, M., Upamanya, G. K., Heisnam, P., Borua, S., Kaman, P. K., Mishra, A. K., Mallik, M., Muthukrishnan, G., Sabarinathan, K. G., Puzari, K. R., and Vijayreddy, D. 2023. Nanotechnological approaches for management of soil-borne plant pathogens. Front. Plant Sci. 14:1136233. doi:10.3389/fpls.2023.1136233.
  • Dzhavakhiya, V. G., Voinova, T. M., Statsyuk, N. V., and Shcherbakova, L. A. 2019. Sensitization of plant pathogenic fungi to the tebuconazole-based commercial fungicide using some analogues of natural amino acids. 030005. doi:10.1063/1.5087313
  • Einhardt, A. M., Ferreira, S., Hawerroth, C., Valadares, S. V., and Rodrigues, F. Á. 2020. Nickel potentiates soybean resistance against infection by Phakopsora pachyrhizi. Plant Pathol. 69:849–859. doi:10.1111/ppa.13169
  • Einhardt, A. M., Souza, G. M. F., Silveira, P. R., and Rodrigues, F. Á. 2020. Potassium, calcium, and zinc phosphites on white mold control in soybean. Bragantia 79:417–424. doi:10.1590/1678-4499.20200137
  • Eisner, S. A., Fiegna, F., McDonald, B. A., and Velicer, G. J. 2023. Bacterial predation of a fungal wheat pathogen: Prelude to experimental evolution of enhanced biocontrol agents. Plant Pathol. 72:1059–1068. doi:10.1111/ppa.13716
  • El-Gamal, N. G., El-Mougy, N. S., Abdel-Kader, M. M., and Ali Khalil, M. S. 2021. Influence of inorganic salts and chitosan as foliar spray on wheat septoria leaf blotch disease severity under field conditions. Archives of Phytopathology and Plant Protection 54:836–849. doi:10.1080/03235408.2020.1854971
  • Elkhwaga, A., Elzaawely, A., Draz, I., Ismail, A., and El-Zahaby, H. 2018. Potential of some plant extracts in controlling wheat leaf rust caused by Puccinia triticina Eriks. Ebss. 2:66–67. doi:10.21608/jenvbs.2018.4421.1031
  • Erdoğan, İ., Cevher-Keskin, B., Bilir, Ö., Hong, Y., and Tör, M. 2023. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. Biology (Basel) 12:1037. doi:10.3390/biology12071037.
  • Faccin, D., and Di Piero, R. M. 2022. Extracts and fractions of humic substances reduce bacterial spot severity in tomato plants, improve primary metabolism and activate the plant defense system. Physiol. Mol. Plant Pathol. 121:101877. doi:10.1016/j.pmpp.2022.101877
  • Feldmann, F., and Carstensen, C. 2018. Efficacy and risks of “biorationals. J. Plant Dis. Prot. 125:517–521. doi:10.1007/s41348-018-0186-0
  • Feldmann, F., Jehle, J., Bradáčová, K., and Weinmann, M. 2022. Biostimulants, soil improvers, bioprotectants: promoters of bio-intensification in plant production. J. Plant Dis. Prot. 129:707–713. doi:10.1007/s41348-022-00567-x
  • Fenibo, E. O., Ijoma, G. N., and Matambo, T. 2021. Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst. 5:619058. doi:10.3389/fsufs.2021.619058
  • Ferreira, F. V., and Musumeci, M. A. 2021. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 37:90. doi:10.1007/s11274-021-03058-7
  • Ferrigo, D., Mondin, M., Ladurner, E., Fiorentini, F., Causin, R., and Raiola, A. 2020. Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biol. Control 147:104286. doi:10.1016/j.biocontrol.2020.104286
  • Filatova, I., Lyushkevich, V., Goncharik, S., Zhukovsky, A., Krupenko, N., and Kalatskaja, J. 2020. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D: Appl. Phys. 53:244001. doi:10.1088/1361-6463/ab7960
  • Findura, P., Hara, P., Szparaga, A., Kocira, S., Czerwińska, E., Bartoš, P., Nowak, J., and Treder, K. 2020. Evaluation of the Effects of Allelopathic Aqueous Plant Extracts, as Potential Preparations for Seed Dressing, on the Modulation of Cauliflower Seed Germination. Agriculture 10:122. doi:10.3390/agriculture10040122
  • Friesen, T. L., Stukenbrock, E. H., Liu, Z., Meinhardt, S., Ling, H., Faris, J. D., Rasmussen, J. B., Solomon, P. S., McDonald, B. A., and Oliver, R. P. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–956. doi:10.1038/ng1839.
  • García-Pedrajas, M. D., Cañizares, M. C., Sarmiento-Villamil, J. L., Jacquat, A. G., and Dambolena, J. S. 2019. Mycoviruses in Biological Control: From Basic Research to Field Implementation. Phytopathology ®, 109:1828–1839. doi:10.1094/PHYTO-05-19-0166-RVW.
  • Gebashe, F., Gupta, S., and Van Staden, J. 2021. Disease management using biostimulants. In Biostimulants for Crops from Seed Germination to Plant Development (p. 411–425. Elsevier. doi:10.1016/B978-0-12-823048-0.00005-8
  • Gebremichael, D. E., Haile, Z. M., Negrini, F., Sabbadini, S., Capriotti, L., Mezzetti, B., and Baraldi, E. 2021. RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. Plants (Basel) 10:650. doi:10.3390/plants10040650.
  • Ghazi, A., Ghazy, N., and Metwally, F. 2021. Finding practical solution to reduce the effect of fungicides coating crop seeds on bacterial bio-inoculants. Ebss. 5:1–2. doi:10.21608/jenvbs.2022.116699.1157
  • Ghosh, S., Patra, S., and Ray, S. 2023. A Combinatorial Nanobased Spray-Induced Gene Silencing Technique for Crop Protection and Improvement. ACS Omega. 8:22345–22351. doi:10.1021/acsomega.3c01968.
  • Gill, U. S., Sun, L., Rustgi, S., Tang, Y., Wettstein, D., and Mysore, K. S. 2018. Transcriptome‐based analyses of phosphite‐mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes. Plant J. 93:894–904. doi:10.1111/tpj.13817.
  • Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., and Hatab, S. R. 2018. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 9:1639. doi:10.3389/fmicb.2018.01639.
  • Gunupuru, L. R., Patel, J. S., Sumarah, M. W., Renaud, J. B., Mantin, E. G., and Prithiviraj, B. 2019. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLOS One. 14:e0220562. doi:10.1371/journal.pone.0220562.
  • Guo, M., Li, B., Xiang, Q., Wang, R., Liu, P., and Chen, Q. 2021. Phosphite translocation in soybean and mechanisms of Phytophthora sojae inhibition. Pestic. Biochem. Physiol. 172:104757. doi:10.1016/j.pestbp.2020.104757.
  • Gupta, A., Liu, B., Chen, Q., and Yang, B. 2023. High‐efficiency prime editing enables new strategies for broad‐spectrum resistance to bacterial blight of rice. Plant Biotechnol. J. 21:1454–1464. doi:10.1111/pbi.14049.
  • Gupta, N., Debnath, S., Sharma, S., Sharma, P., and Purohit, J. 2017. Role of Nutrients in Controlling the Plant Diseases in Sustainable Agriculture. In Agriculturally Important Microbes for Sustainable Agriculture (p. 217–262. Springer Singapore. doi:10.1007/978-981-10-5343-6_8
  • Gupta, S., Bhattacharyya, P., Kulkarni, M. G., and Doležal, K. 2023. Editorial: Growth regulators and biostimulants: upcoming opportunities. Front. Plant Sci. 14:1209499. doi:10.3389/fpls.2023.1209499.
  • Gupta, T., Kumari, C., Kulshrestha, S. and Vanshika,. 2019. Biology and mycovirus-assisted biological control of Sclerotinia sclerotiorum infecting vegetable and oilseed crops. Archives of Phytopathology and Plant Protection 52:1049–1067. doi:10.1080/03235408.2019.1688913
  • Haneklaus, S., Bloem, E., Funder, U., and Schnug, F. 2007. Effect of foliar-applied elemental sulphur on Fusarium infections in barley. Landbauforschung Völkenrode 57:213–217.
  • Haneklaus, S., Bloem, E., and Schnug, E. 2009. Plant Disease Control by Nutrient Management: Sulphur. In Disease Control in Crops (p. 221–236. Wiley-Blackwell. doi:10.1002/9781444312157.ch11
  • Hara, P., Szparaga, A., and Czerwinska, E. 2018. Ecological methods used to control fungi that cause diseases of the crop plant. Rocznik Ochrona Srodowiska 20:1764–1775.
  • Hassan, Md, M., Yuan, G., Chen, J.-G., Tuskan, G. A., and Yang, X. 2020. Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. BioDesign Res. 2020:. doi:10.34133/2020/9350905
  • Himaya, S. M. M., Sivasubramaniam, N., and Afreen, S. M., M. 2021. A review on role of mycorrhizal fungi in plant disease management. Sri Lanka J. Technol. Res. 1:41–50.
  • Höfle, L., Biedenkopf, D., Werner, B. T., Shrestha, A., Jelonek, L., and Koch, A. 2020. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol. 17:463–473. doi:10.1080/15476286.2019.1700033.
  • Hu, D., Chen, Z., Zhang, C., and Ganiger, M. 2020. Reduction of Phakopsora pachyrhizi infection on soybean through host‐ and spray‐induced gene silencing. Mol. Plant Pathol. 21:794–807. doi:10.1111/mpp.12931.
  • Hu, T., Luan, H., Wang, L., Ren, R., Sun, L., Yin, J., Liu, H., Jin, T., Li, B., Li, K., and Zhi, H. 2023. Soybean Mosaic Virus 6K1 Interactors Screening and GmPR4 and GmBI1 Function Characterization. Int J Mol Sci 24:5304. doi:10.3390/ijms24065304.
  • Huang, Y., Cai, S., Zhang, G., and Ruan, S. 2020. Transcriptome-Based Analysis of Phosphite-Induced Resistance against Pathogens in Rice. Plants (Basel) 9:1334. doi:10.3390/plants9101334.
  • Huang, Z., and Liu, G. 2023. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 11:1039315. doi:10.3389/fbioe.2023.1039315.
  • Hussain, M., Shakoor, N., Adeel, M., Ahmad, M. A., Zhou, H., Zhang, Z., Xu, M., Rui, Y., and White, J. C. 2023. Nano-enabled plant microbiome engineering for disease resistance. Nano Today 48:101752. doi:10.1016/j.nantod.2023.101752
  • Iriti, M., and Varoni, E. M. 2017. Moving to the Field: Plant Innate Immunity in Crop Protection. Int J Mol Sci 18:640. doi:10.3390/ijms18030640.
  • Jambhulkar, P. P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P., and Jambhulkar, N. 2018. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. Eur. J. Plant Pathol. 152:747–757. doi:10.1007/s10658-018-1519-3
  • Jamali, H., Sharma, A., Roohi, N., Srivastava, A. K. 2020. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology 60(3):268–280. doi:10.1002/jobm.201900347.
  • Janatova, A., Bernardos, A., Smid, J., Frankova, A., Lhotka, M., Kourimská, L., Pulkrabek, J., and Kloucek, P. 2015. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crops Prod. 67:216–220. doi:10.1016/j.indcrop.2015.01.019
  • Jiang, C., Li, Z., Zheng, L., Yu, Y., and Niu, D. 2023. Small RNAs: Efficient and miraculous effectors that play key roles in plant–microbe interactions. Mol. Plant Pathol. 24:999–1013. doi:10.1111/mpp.13329.
  • Jiang, Y., Sun, K., and An, X. 2022. CRISPR/Cas System: Applications and Prospects for Maize Improvement. ACS Agric. Sci. Technol. 2:174–183. doi:10.1021/acsagscitech.1c00253
  • Jsarotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., and Singh, G. P. 2018. Nanotechnology Scope and Applications for Wheat Production and Quality Enhancement:A Review of Recent Advances. Wbr. 10:. doi:10.25174/2249-4065/2018/76672
  • Kakembo, D., and Lee, Y. H. 2019. Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol. Control 134:72–81. doi:10.1016/j.biocontrol.2019.04.006
  • Karmous, I., Vaidya, S., Dimkpa, C., Zuverza-Mena, N., da Silva, W., Barroso, K. A., Milagres, J., Bharadwaj, A., Abdelraheem, W., White, J. C., and Elmer, W. H. 2023. Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against Fusarium virguliforme. Pestic. Biochem. Physiol. 194:105486. doi:10.1016/j.pestbp.2023.105486.
  • Karsli, A., and Şahin, Y. S. 2021. The role of fungal volatile organic compounds (FVOCs) in biological control. Türkiye Biyolojik Mücadele Dergisi 12:79–92. doi:10.31019/tbmd.818701
  • Karuppiah, V., He, A., Lu, Z., Wang, X., Li, Y., and Chen, J. 2022. Trichoderma asperellum GDFS1009‐mediated maize resistance against Fusarium graminearum stalk rot and mycotoxin degradation. Biol. Control 174:105026. doi:10.1016/j.biocontrol.2022.105026
  • Khan, M. A., Raheel, M., Khan, S. A., Abid, A. D., Shahzad, S., Siddiqui, H. Z., Atif, M., and Hanif, A. 2023. Eco-friendly management of wheat stripe rust through application of Bacillus subtilis in combination with plant defense activators. Journal of King Saud University - Science 35:102587. doi:10.1016/j.jksus.2023.102587
  • Khan, Z. 2023. Engineering Disease Resistance in Plants Using CRISPR-Cas. CRC Press. doi:10.1201/b22901
  • Kisiriko, M., Anastasiadi, M., Terry, L. A., Yasri, A., Beale, M. H., and Ward, J. L. 2021. Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants. Molecules 26:6343. doi:10.3390/molecules26216343.
  • Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J., Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T., and Kogel, K.-H. 2016. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog. 12:e1005901. doi:10.1371/journal.ppat.1005901.
  • Kocira, S., Hara, P., Szparaga, A., Czerwińska, E., Beloev, H., Findura, P., and Bajus, P. 2020. Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture 10:90. doi:10.3390/agriculture10040090
  • Kocira, S., Pérez-Pizá, M. C., Bohata, A., Bartos, P., and Szparaga, A. 2022. Cold Plasma as a Potential Activator of Plant Biostimulants. Sustainability 14:495. doi:10.3390/su14010495
  • Kriz, P., Olsan, P., Havelka, Z., Bohata, A., Krishna, S., Cerny, P., Filip, M., Bartos, P., Kocira, S., and Spatenka, P. 2021. Experimental Investigation into the Influence of Plasma Technology on Seed Surface Wettability. Applied Sciences 11:9994. doi:10.3390/app11219994
  • Ku, Y., Xu, G., Tian, X., Xie, H., Yang, X., Cao, C., and Chen, Y. 2018. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS One. 13:e0200181. doi:10.1371/journal.pone.0200181
  • Kulkova, I., Dobrzyński, J., Kowalczyk, P., Bełżecki, G., and Kramkowski, K. 2023. Plant growth promotion using Bacillus cereus. Int. J. Mol. Sci. 24:9759. doi:10.3390/ijms24119759
  • Kumar, M., Giri, V. P., Pandey, S., Gupta, A., Patel, M. K., Bajpai, A. B., Jenkins, S., and Siddique, K. H. M. 2021. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. Int J Mol Sci 22:12245. doi:10.3390/ijms222212245.
  • Kumar, P., Thakur, S., Dhingra, G. K., Singh, A., Pal, M. K., Harshvardhan, K., Dubey, R. C., and Maheshwari, D. K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal. Agric. Biotechnol. 15:264–269. doi:10.1016/j.bcab.2018.06.019
  • Kumari, P., Azad, C., Kumar, R. R., Kumari, J., Aditya, K., and Kumar, A. 2023. Defense inducer compounds up-regulated the peroxidase, polyphenol oxidase, and total phenol activities against spot blotch disease of wheat. Plant Pathol. J. 39:159–170. doi:10.5423/PPJ.OA.06.2022.0080.
  • Kumar, S., Kumar, D., Dilbaghi, N. and Sandhya, 2017. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. Int. 24:926–937. doi:10.1007/s11356-016-7774-y
  • Lachhab, N., Sanzani, S. M., Adrian, M., Chiltz, A., Balacey, S., Boselli, M., Ippolito, A., and Poinssot, B. 2014. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. Front. Plant Sci. 5:716. doi:10.3389/fpls.2014.00716.
  • Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., and Barka, E. A. 2022. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 10:596. doi:10.3390/microorganisms10030596.
  • Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., and Perelló, A. 2016. Endophytes from wheat as biocontrol agents against tan spot disease. Biol. Control 92:17–23. doi:10.1016/j.biocontrol.2015.09.002
  • Le Mire, G., Siah, A., Marolleau, B., Gaucher, M., Maumené, C., Brostaux, Y., Massart, S., Brisset, M.-N., and Jijakli, M. H. 2019. Evaluation of λ-Carrageenan, CpG-ODN, Glycine Betaine, Spirulina platensis, and Ergosterol as Elicitors for Control of Zymoseptoria tritici in Wheat. Phytopathology® 109:409–417. doi:10.1094/PHYTO-11-17-0367-R.
  • Leannec-Rialland, V., Cabezas-Cruz, A., Atanasova, V., Chereau, S., Ponts, N., Tonk, M., Vilcinskas, A., Ferrer, N., Valdés, J. J., and Richard-Forget, F. 2021. Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency. Sci. Rep. 11:7962. doi:10.1038/s41598-021-86904-w
  • Li, J., Hu, S., Jian, W., Xie, C., and Yang, X. 2021. Plant antimicrobial peptides: structures, functions, and applications. Bot. Stud. 62:5. doi:10.1186/s40529-021-00312-x
  • Li, J., Li, Y., and Ma, L. 2021. Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. ABIOTECH 2:375–385. doi:10.1007/s42994-021-00042-5.
  • Li, P., Zhang, H., Chen, X., Qiu, D., and Guo, L. 2015. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 481:151–160. doi:10.1016/j.virol.2015.02.047.
  • Li, Y., Zhang, P., Li, M., Shakoor, N., Adeel, M., Zhou, P., Guo, M., Jiang, Y., Zhao, W., Lou, B., and Rui, Y. 2023. Application and mechanisms of metal‐based nanoparticles in the control of bacterial and fungal crop diseases. Pest Manag. Sci. 79:21–36. doi:10.1002/ps.7218.
  • Liu, S., Geng, S., Li, A., Mao, Y., and Mao, L. 2021. RNAi technology for plant protection and its application in wheat. ABIOTECH 2:365–374. doi:10.1007/s42994-021-00036-3.
  • Los, A., Ziuzina, D., Boehm, D., and Bourke, P. 2020. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Int. J. Food Microbiol. 335:108889. doi:10.1016/j.ijfoodmicro.2020.108889.
  • Lu, Q., S. M., and Tian, L. 2022. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes. BMC Biotechnol. 22:7. doi:10.1186/s12896-022-00737-7
  • Luziatelli, F., Ficca, A. G., Colla, G., Svecova, E., and Ruzzi, M. 2016. Effects of a protein hydrolysate-based biostimulant and two micronutrient-based fertilizers on plant growth and epiphytic bacterial population of lettuce. Acta Hortic. 1148:43–48. doi:10.17660/ActaHortic.2016.1148.5
  • Ma, C., Simonetti, E., Ravotti, M. E., Sc, M. M., Luque, A. G., Formento, N. A., Sautua, F. J. and Iani, 2017. In vitro antifungal/fungistatic activity of manganese phosphite against soybean soil-borne pathogens. Phyton 86:265–269. doi:10.32604/phyton.2017.86.265
  • Maciag, T., Kozieł, E., Rusin, P., Otulak-Kozieł, K., Jafra, S., and Czajkowski, R. 2023. Microbial Consortia for Plant Protection against Diseases: More than the Sum of Its Parts. Int J Mol Sci 24:12227. doi:10.3390/ijms241512227.
  • Maeda, E. E., Abera, T. A., Siljander, M., Aragão, L. E. O. C., Moura, Y. M., d., and Heiskanen, J. 2021. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA. 118:. doi:10.1073/pnas.2023787118
  • Mahanty, B., Mishra, R., and Joshi, R. K. 2023. Cross-kingdom small RNA communication between plants and fungal phytopathogens-recent updates and prospects for future agriculture. RNA Biol. 20:109–119. doi:10.1080/15476286.2023.2195731.
  • Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J. B., Shah, M. M. R., Barek, V., Ondrisik, P., Skalický, M., and Hossain, A. 2021. Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms 10:51. doi:10.3390/microorganisms10010051.
  • Maroušek, J., Maroušková, A., Periakaruppan, R., Gokul, G. M., Anbukumaran, A., Bohatá, A., Kříž, P., Bárta, J., Černý, P., and Olšan, P. 2022. Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers (Basel) 14:266. doi:10.3390/polym14020266.
  • Marquez, N., Giachero, M. L., Gallou, A., Debat, H. J., Declerck, S., and Ducasse, D. A. 2019. Transcriptome analysis of mycorrhizal and nonmycorrhizal soybean plantlets upon infection with Fusarium virguliforme, one causal agent of sudden death syndrome. Plant Pathol. 68:470–480. doi:10.1111/ppa.12964
  • Marra, R., Lombardi, N., d‘Errico, G., Troisi, J., Scala, G., Vinale, F., Woo, S. L., Bonanomi, G., and Lorito, M. 2019. Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. J. Agric. Food Chem. 67:1814–1822. doi:10.1021/acs.jafc.8b06503
  • Mashabela, M. D., Tugizimana, F., Steenkamp, P. A., Piater, L. A., Dubery, I. A., Terefe, T., and Mhlongo, M. I. 2023. Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f. sp. tritici (stripe rust). Front. Plant Sci. 14:1103413. doi:10.3389/fpls.2023.1103413.
  • Maywald, J. N., Francioli, D., Mang, M., and Ludewig, U. 2023. Role of Mineral Nitrogen Nutrition in Fungal Plant Diseases of Cereal Crops. Crit. Rev. Plant Sci. 42:93–123. doi:10.1080/07352689.2023.2196100
  • Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., and Singh, H. B. 2014. Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat. PLoS One. 9:e97881. doi:10.1371/journal.pone.0097881.
  • Mitra, M., Venkatesh, P., Ghissing, U., Biswas, A., Mitra, A., Mandal, M., Mishra, H. N., and Maiti, M. K. 2023. Fruity-scented antifungal volatiles from endophytic Geotrichum candidum PF005: Broad-spectrum bioactivity against stored grain pathogens, mode of action and suitable formulation for mycofumigation. Biol. Control 177:105129. doi:10.1016/j.biocontrol.2022.105129
  • Modrzewska, M., Bryła, M., Kanabus, J., and Pierzgalski, A. 2022. Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: Opportunities and possibilities. Plant Pathol. 71:1471–1485. doi:10.1111/ppa.13578
  • Moenne, A., and González, A. 2021. Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr. Res. 503:108298. doi:10.1016/j.carres.2021.108298
  • Mohammadi, M. A., Cheng, Y., Aslam, M., Jakada, B. H., Wai, M. H., Ye, K., He, X., Luo, T., Ye, L., Dong, C., Hu, B., Priyadarshani, S. V. G. N., Wang-Pruski, G., and Qin, Y. 2021. ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response. Front. Microbiol. 12:631318. doi:10.3389/fmicb.2021.631318.
  • Mosela, M., Andrade, G., Massucato, L. R., de Araújo Almeida, S. R., Nogueira, A. F., de Lima Filho, R. B., Zeffa, D. M., Mian, S., Higashi, A. Y., Shimizu, G. D., Teixeira, G. M., Branco, K. S., Faria, M. V., Giacomin, R. M., Scapim, C. A., and Gonçalves, L. S. A. 2022. Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Sci. Rep. 12:15284. doi:10.1038/s41598-022-19515-8
  • Montesinos, E. 2023. Functional Peptides for Plant Disease Control. Annu. Rev. Phytopathol. 61:301–324. doi:10.1146/annurev-phyto-021722-034312
  • Moumni, M., Brodal, G., and Romanazzi, G. 2023. Recent innovative seed treatment methods in the management of seedborne pathogens. Food Sec. 15:1365–1382. doi:10.1007/s12571-023-01384-2
  • Mudziwapasi, R., Chekera, R., Ncube, C. Z., Shoko, I., Ncube, B., Moyo, T., Chimbo, J. G., Dube, J., Mashiri, F. F., Mubani, M. A., Maruta, D., Chimbo, C., Masuku, M., Shoko, R., Nyamusamba, R. P., and Jomane, F. N. 2021. Genome Editing Tools and Gene Drives. CRC Press. doi:10.1201/9781003165316
  • Mushtaq, M., Dar, A. A., Basu, U., Bhat, B. A., Mir, R. A., Vats, S., Dar, M. S., Tyagi, A., Ali, S., Bansal, M., Rai, G. K., and Wani, S. H. 2021. Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Front. Genet. 12:735489. doi:10.3389/fgene.2021.735489.
  • Nabila, N. H., Ramli, N. K. C. M., Yunus, N. Y., and Md Latip, S. N. H. 2021. Evaluation of selected herbs for biocontrol of Rice Blast Disease. IOP Conf. Ser: Earth Environ. Sci. 685:012026. doi:10.1088/1755-1315/685/1/012026
  • Naz, R., Bano, A., Nosheen, A., Yasmin, H., Keyani, R., Shah, S. T. A., Anwar, Z., and Roberts, T. H. 2021. Induction of defense-related enzymes and enhanced disease resistance in maize against Fusarium verticillioides by seed treatment with Jacaranda mimosifolia formulations. Sci. Rep. 11:59. doi:10.1038/s41598-020-79306-x
  • Ni, P., Zhao, Y., Zhou, X., Liu, Z., Huang, Z., Ni, Z., Sun, Q., and Zong, Y. 2023. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol. 24:156. doi:10.1186/s13059-023-02990-1
  • Nithya, K., Shanmugaiah, V., Balasubramanian, N., and Gomathinayagam, S. 2019. Plant Defence Related Enzymes in Rice (Oryzae sativa L.,) induced by Pseudomonas sp VSMKU2. J. Pure Appl. Microbiol. 13:1307–1315. doi:10.22207/JPAM.13.3.02
  • Niu, B., Paulson, J. N., Zheng, X., and Kolter, R. 2017. Simplified and representative bacterial community of maize roots. Proc. Natl. Acad. Sci. USA. 114:. doi:10.1073/pnas.1616148114
  • Niu, B., Wang, W., Yuan, Z., Sederoff, R. R., Sederoff, H., Chiang, V. L., and Borriss, R. 2020. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front. Microbiol. 11:585404. doi:10.3389/fmicb.2020.585404.
  • Novaes, M. I. C., Debona, D., Fagundes-Nacarath, I. R. F., Brás, V. V., and Rodrigues, F. A. 2019. Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam. Acta Physiol. Plant. 41:186. doi:10.1007/s11738-019-2976-9
  • Omoboye, O. O., Oni, F. E., Batool, H., Yimer, H. Z., De Mot, R., and Höfte, M. 2019. Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. Front. Plant Sci. 10:901. doi:10.3389/fpls.2019.00901.
  • Omran, B. A., and Baek, K.-H. 2022. Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J. Cleaner Prod. 372:133729. doi:10.1016/j.jclepro.2022.133729
  • Ons, L., Bylemans, D., Thevissen, K., and Cammue, B. P. A. 2020. Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms 8:1930. doi:10.3390/microorganisms8121930.
  • Özkale, E., Yörük, E., Budak, M., and Korkmaz, E. M. 2023. Trichoderma atroviride suppresses Fusarium graminearum by altering primary and secondary metabolite biosynthesis profiling. Plant Pathol. 72:1428–1441. doi:10.1111/ppa.13768
  • Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., and Kaur, J. 2022. Major biological control strategies for plant pathogens. Pathogens 11:273. doi:10.3390/pathogens11020273
  • Parperides, E., El Mounadi, K., and Garcia‐Ruiz, H. 2023. Induction and suppression of gene silencing in plants by nonviral microbes. Mol. Plant Pathol. 24:1347–1356. doi:10.1111/mpp.13362.
  • Pasquoto-Stigliani, T., Guilger-Casagrande, M., Campos, E. V., Germano-Costa, T., Bilesky-José, N., Migliorini, B. B., Feitosa, L. O., Sousa, B. T., de Oliveira, H. C., Fraceto, L. F., and Lima, R. 2023. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. J. Nanobiotechnol. 21:166. doi:10.1186/s12951-023-01918-y
  • Paz, C., Viscardi, S., Iturra, A., Marin, V., Miranda, F., Barra, P. J., Mendez, I., and Duran, P. 2020. Antifungal Effects of Drimane Sesquiterpenoids Isolated from Drimys winteri against Gaeumannomyces graminis var. tritici. Appl. Environ. Microbiol. 86:. doi:10.1128/AEM.01834-20
  • Pedersen, C., and Marzano, S.-Y. 2023. Mechanisms of primed defense: plant immunity induced by endophytic colonization of a mycovirus-induced hypovirulent fungal pathogen. Mpmi.. doi:10.1094/MPMI-06-23-0083-R
  • Peng, J., Nie, J., Chen, X., Zhang, L., Yao, X., Li, P., Shi, H., Song, C., and Dong, H. 2022. Editing of the rice importin gene IMPα1b results in sequestration of TAL effectors from plant cell nuclei. Phytopathol. Res. 4:44. doi:10.1186/s42483-022-00149-7
  • Perczak, A., Gwiazdowska, D., Marchwińska, K., Juś, K., Gwiazdowski, R., and Waśkiewicz, A. 2019. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch. Microbiol. 201:1085–1097. doi:10.1007/s00203-019-01673-5.
  • Perello, A. E., Monaco, C. I., Moreno, M. V., Cordo, C. A., and Simon, M. R. 2006. The effect of Trichoderma harzianum and T. koningii on the control of tan spot (Pyrenophora tritici-repentis) and leaf blotch (Mycosphaerella graminicola) of wheat under field conditions in Argentina. Biocontrol Sci. Technol. 16:803–813. doi:10.1080/09583150600700099
  • Perelló, A., Mónaco, C., Simón, M. R., Sisterna, M., and Bello, G. D. 2003. Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Prot. 22:1099–1106. doi:10.1016/S0261-2194(03)00143-1
  • Pérez Pizá, M. C., Prevosto, L., Zilli, C., Cejas, E., Kelly, H., and Balestrasse, K. 2018. Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innovative Food Science and Emerging Technologies 49:82–91. doi:10.1016/j.ifset.2018.07.009
  • Pérez-Pizá, M. C., Cejas, E., Zilli, C., Prevosto, L., Mancinelli, B., Santa-Cruz, D., Yannarelli, G., and Balestrasse, K. 2020. Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Sci. Rep. 10:4917. doi:10.1038/s41598-020-61913-3
  • Pérez‐Pizá, M. C., Grijalba, P. E., Cejas, E., Chamorro Garcés, J. C., Ferreyra, M., Zilli, C., Vallecorsa, P., Santa‐Cruz, D., Yannarelli, G., Prevosto, L., and Balestrasse, K. 2021. Effects of non‐thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved. Pest Manag. Sci. 77:2068–2077. doi:10.1002/ps.6234.
  • Pérez-Pizá, M. C., Ibañez, V. N., Varela, A., Cejas, E., Ferreyra, M., Chamorro-Garcés, J. C., Zilli, C., Vallecorsa, P., Fina, B., Prevosto, L., Marfil, C. F., and Balestrasse, K. B. 2022. Non-Thermal Plasmas Affect Plant Growth and DNA Methylation Patterns in Glycine max. J. Plant Growth Regul. 41:2732–2742. doi:10.1007/s00344-021-10470-8
  • Pérez-Pizá, M. C., Prevosto, L., Grijalba, P. E., Zilli, C. G., Cejas, E., Mancinelli, B., and Balestrasse, K. B. 2019. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon 5:e01495. doi:10.1016/j.heliyon.2019.e01495.
  • Persaud, R., Khan, A., Isaac, W.-A., Ganpat, W., and Saravanakumar, D. 2019. Plant extracts, bioagents and new generation fungicides in the control of rice sheath blight in Guyana. Crop Prot. 119:30–37. doi:10.1016/j.cropro.2019.01.008
  • Pimentel, M. F., Arnao, E., Warner, A. J., Rocha, L. F., Subedi, A., Elsharif, N., Chilvers, M. I., Matthiesen, R., Robertson, A. E., Bradley, C. A., Neves, D. L., Pedersen, D. K., Reuter-Carlson, U., Lacey, J. V., Bond, J. P., and Fakhoury, A. M. 2022. Reduction of Pythium Damping-Off in Soybean by Biocontrol Seed Treatment. Plant Dis. 106:2403–2414. doi:10.1094/PDIS-06-21-1313-RE.
  • Pinto e Nose, N., Mateus, S. D., Bruna, L. D., Rodrigo, S. T., Dalmarcia, S. C. M., Marcos, G., Alex, C., Sabrina, H. d C. A., and Gil, R. d S. 2022. Noni essential oil associated with adjuvants in the production of phytoalexins and in the control of soybean anthracnosis. J. Med. Plants Res. 16:1–10. doi:10.5897/JMPR2021.7154
  • Poveda, J., and Eugui, D. 2022. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control 176:105100. doi:10.1016/j.biocontrol.2022.105100
  • Pramanik, K., Mandal, S., Banerjee, S., Ghosh, A., Maiti, T. K., and Mandal, N. C. 2021. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere 274:129819. doi:10.1016/j.chemosphere.2021.129819
  • Prasetyo, J., Ginting, C., Akin, H. M., Suharjo, R., Niswati, A., Afandi, A., Adiwijaya, R., Sudiono, S., and Nurdin, M. 2021. The effect of biological agent and botanical fungicides on maize downy mildew. Biodiversitas 22:. doi:10.13057/biodiv/d220409
  • Qi, T., Guo, J., Peng, H., Liu, P., Kang, Z., and Guo, J. 2019. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley. Int J Mol Sci 20:206. doi:10.3390/ijms20010206.
  • Qiao, L., Lan, C., Capriotti, L., Ah‐Fong, A., Nino Sanchez, J., Hamby, R., Heller, J., Zhao, H., Glass, N. L., Judelson, H. S., Mezzetti, B., Niu, D., and Jin, H. 2021. Spray‐induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 19:1756–1768. doi:10.1111/pbi.13589.
  • Rai-Kalal, P., Tomar, R. S., and Jajoo, A. 2021. H2O2 signaling regulates seed germination in ZnO nanoprimed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environ. Exp. Bot. 189:104561. doi:10.1016/j.envexpbot.2021.104561
  • Rajput, M., Choudhary, K., Kumar, M., Vivekanand, V., Chawade, A., Ortiz, R., and Pareek, N. 2021. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. Plants (Basel) 10:1914. doi:10.3390/plants10091914.
  • Ram, R. M., Debnath, A., Negi, S., and Singh, H. B. 2022. Use of microbial consortia for broad spectrum protection of plant pathogens. In Biopesticides (p. 319–335. Elsevier. doi:10.1016/B978-0-12-823355-9.00017-1
  • Rashad, Y. M., El-Sharkawy, H.H., Abdalla, S.A., Omar, M. I., and Nahla, T. E. 2023. Mycorrhizal colonization and Streptomyces viridosporus HH1 synergistically up-regulate the polyphenol biosynthesis genes in wheat against stripe rust. BMC Plant Biol. 23:388. doi:10.1186/s12870-023-04395-5
  • Rebouh, N. Y., Aliat, T., Polityko, P. M., Kherchouche, D., Boulelouah, N., Temirbekova, S. K., Afanasyeva, Y. V., Kucher, D. E., Plushikov, V. G., Parakhina, E. A., Latati, M., and Gadzhikurbanov, A. S. 2022. Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions. Plants (Basel) 11:1566. doi:10.3390/plants11121566.
  • Reglinski, T., Havis, N., Rees, H. J., and de Jong, H. 2023. The Practical Role of Induced Resistance for Crop Protection. Phytopathology® 113:719–731. doi:10.1094/PHYTO-10-22-0400-IA.
  • Reiss, A., and Jørgensen, L. N. 2017. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade ® ASO (Bacillus subtilis strain QST713). Crop Prot. 93:1–8. doi:10.1016/j.cropro.2016.11.009
  • Reynoso, A., Sautua, F., Carmona, M., Chulze, S., and Palazzini, J. 2023. Tan spot of wheat: can biological control interact with actual management practices to counteract this global disease? Eur. J. Plant Pathol. 166:27–38. doi:10.1007/s10658-023-02647-6
  • Richard, B., Qi, A., and Fitt, B. D. L. 2022. Control of crop diseases through Integrated Crop Management to deliver climate‐smart farming systems for low‐ and high‐input crop production. Plant Pathol. 71:187–206. doi:10.1111/ppa.13493
  • Rifna, E. J., Ratish Ramanan, K., and Mahendran, R. 2019. Emerging technology applications for improving seed germination. Trends Food Sci. Technol. 86:95–108. doi:10.1016/j.tifs.2019.02.029
  • Righini, H., Francioso, O., Martel Quintana, A., and Roberti, R. 2022. Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. Horticulturae 8:58. doi:10.3390/horticulturae8010058
  • Rizwana, H., Alzahrani, T., Alwahibi, M. S., Aljowaie, R. M., Aldehaish, H. A., Alsaggabi, N. S., and Ramadan, R. 2022. Phytofabrication of Silver Nanoparticles and Their Potent Antifungal Activity against Phytopathogenic Fungi. Processes 10:2558. doi:10.3390/pr10122558
  • Robertson, G., Burger, J., and Campa, M. 2022. CRISPR/Cas‐based tools for the targeted control of plant viruses. Mol. Plant Pathol. 23:1701–1718. doi:10.1111/mpp.13252.
  • Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H., and Oliveira, R. S. 2019. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 10:1357. doi:10.3389/fpls.2019.01357.
  • Rodríguez Melo, J., Mammarella, F., and Ariel, F. 2023. Exogenous RNAs: promising tools for the second green revolution. J. Exp. Bot. 74:2323–2337. doi:10.1093/jxb/erad023.
  • Román-Ramos, A. E., Randy Kutcher, H., and José Dallagnol, L. 2023. Pyrenophora tritici-repentis : A Worldwide Threat to Wheat. In Wheat [Working Title]. IntechOpen. doi:10.5772/intechopen.110306
  • Rouphael, Y., and Colla, G. 2020. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 11:40. doi:10.3389/fpls.2020.00040.
  • Saberi Riseh, R., Gholizadeh Vazvani, M., Ebrahimi-Zarandi, M., and Skorik, Y. A. 2022. Alginate-Induced Disease Resistance in Plants. Polymers (Basel) 14:661. doi:10.3390/polym14040661.
  • Salwan, R., Sharma, A., Kaur, R., Sharma, R., Sharma, V. 2022. The riddles of Trichoderma induced plant immunity. Biological Control 174:105037. doi: 10.1016/j.biocontrol.2022.105037
  • Sandhya, K. S., Kumar, D., and Dilbaghi, N. 2017. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res Int 24:926–937. doi:10.1007/s11356-016-7774-y.
  • Santra, H. K., and Banerjee, D. 2020. Natural Products as Fungicide and Their Role in Crop Protection. In Natural Bioactive Products in Sustainable Agriculture (p. 131–219. Springer Singapore. doi:10.1007/978-981-15-3024-1_9
  • Satti, S. H., Raja, N. I., Ikram, M., Oraby, H. F., Mashwani, Z.-U.-R., Mohamed, A. H., Singh, A., and Omar, A. A. 2022. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules 27:4274. doi:10.3390/molecules27134274.
  • Satti, S. H., Raja, N. I., Javed, B., Akram, A., Mashwani, Z.-R., Ahmad, M. S., and Ikram, M. 2021. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLOS One. 16:e0246880. doi:10.1371/journal.pone.0246880.
  • Sautua, F. J., and Carmona, M. A. 2021. Detection and characterization of QoI resistance in Pyrenophora tritici‐repentis populations causing tan spot of wheat in Argentina. Plant Pathol. 70:2125–2136. doi:10.1111/ppa.13436
  • Scala, V., Pietricola, C., Farina, V., Beccaccioli, M., Zjalic, S., Quaranta, F., Fornara, M., Zaccaria, M., Momeni, B., Reverberi, M., and Iori, A. 2020. Tramesan Elicits Durum Wheat Defense against the Septoria Disease Complex. Biomolecules 10:608. doi:10.3390/biom10040608.
  • Schaefer, L. K., Parlange, F., Buchmann, G., Jung, E., Wehrli, A., Herren, G., Müller, M. C., Stehlin, J., Schmid, R., Wicker, T., Keller, B., and Bourras, S. 2020. Cross-Kingdom RNAi of Pathogen Effectors Leads to Quantitative Adult Plant Resistance in Wheat. Front. Plant Sci. 11:253. doi:10.3389/fpls.2020.00253.
  • Schierenbeck, M., Fleitas, M. C., and Simón, M. R. 2023. The Interaction of Fungicide and Nitrogen for Aboveground Biomass from Flag Leaf Emergence and Grain Yield Generation under Tan Spot Infection in Wheat. Plants (Basel) 12:212. doi:10.3390/plants12010212.
  • Schmidt, C. S., Mrnka, L., Frantík, T., Bárnet, M., Vosátka, M., and Baldassarre Švecová, E. 2020. Impact of protein hydrolysate biostimulants on growth of barley and wheat and their interaction with symbionts and pathogens. Afsci. 29:. doi:10.23986/afsci.84790
  • Schumann, A. W., and Spann, T. M. 2010. Mineral Nutrition Contributes to Plant Disease and Pest Resistance. EDIS 2010:1–5. doi:10.32473/edis-hs1181-2010
  • See, P. T., Chen, K., Marathamuthu, K. A., Wood, B., Schultz, N., Shankar, M., and Moffat, C. S. 2022. Virulence assessment of Australian Pyrenophora tritici‐repentis isolates. Plant Pathol. 71:556–565. doi:10.1111/ppa.13484
  • Seo, J.-K., Choi, H.-S., and Kim, K.-H. 2016. Engineering of soybean mosaic virus as a versatile tool for studying protein–protein interactions in soybean. Sci. Rep. 6:22436. doi:10.1038/srep22436.
  • Sequín, C. J., Sampietro, D. A., Gomez, A. A., Catalán, C. A. N., and Aceñolaza, P. G. 2019. Antifungals from forest trees: Usefulness in the control of etiological agents of late season soybean diseases. Ann. Appl. Biol. 174:293–300. doi:10.1111/aab.12492
  • Sequín, C. J., Sampietro, D. A., Sgariglia, M. A., Soberón, J. R., Catalán, C. A. N., and Aceñolaza, P. G. 2020. Use of extracts from Prosopis nigra in the control of Cercospora kikuchii and Septoria glycines. Ind. Crops Prod. 158:112979. doi:10.1016/j.indcrop.2020.112979
  • Shamim, A. H. 2021. Medicinal Plants, A promising Source of Natural Fungicides against andamp;lt;iandamp;gt;Magnaporthe oryzae Triticumandamp;lt;/iandamp;gt;, Causal Agent of Wheat Blast. Ajps. 12:748–758. doi:10.4236/ajps.2021.125051
  • Sharma, M., Tarafdar, R. G., and Gopalakrishanan, S. 2017. Biological control as a tool for eco-friendly management of plant pathogens. In Advances in Soil Microbiology: Recent Trends and Future Prospects (Vol. 2, p. 153–188. Springer.
  • Shcherbakova, L. A, All-Russian Research Institute of Phytopathology. 2019. Fungicide resistance of plant pathogenic fungi and their chemosensitization as a tool to increase anti-disease effects of triazoles and strobilurines. S-h. Biol. 54:875–891. doi:10.15389/agrobiology.2019.5.875eng
  • Shcherbakova, L., Mikityuk, O., Arslanova, L., Stakheev, A., Erokhin, D., Zavriev, S., and Dzhavakhiya, V. 2021. Studying the Ability of Thymol to Improve Fungicidal Effects of Tebuconazole and Difenoconazole Against Some Plant Pathogenic Fungi in Seed or Foliar Treatments. Front. Microbiol. 12:629429. doi:10.3389/fmicb.2021.629429.
  • Shen, F.-T., Yen, J.-H., Liao, C.-S., Chen, W.-C., and Chao, Y.-T. 2019. Screening of Rice Endophytic Biofertilizers with Fungicide Tolerance and Plant Growth-Promoting Characteristics. Sustainability 11:1133. doi:10.3390/su11041133
  • Shwaiki, L. N., Lynch, K. M., and Arendt, E. K. 2021. Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends Food Sci. Technol. 112:312–324. doi:10.1016/j.tifs.2021.04.010
  • Simón, M. R., Börner, A., and Struik, P. C. 2021. Editorial: Fungal Wheat Diseases: Etiology, Breeding, and Integrated Management. Front. Plant Sci. 12:671060. doi:10.3389/fpls.2021.671060.
  • Smedley, M. A., Hayta, S., Clarke, M., and Harwood, W. A. 2021. CRISPR‐Cas9 Based Genome Editing in Wheat. Curr. Protoc. 1:e65. doi:10.1002/cpz1.65.
  • Solis-Palacios, R., Hernández-Ramírez, G., Salinas-Ruiz, J., Hidalgo-Contreras, J. V., and Gómez-Merino, F. C. 2021. Effect and Compatibility of Phosphite with Trichoderma sp. Isolates in the Control of the Fusarium Species Complex Causing Pokkah Boeng in Sugarcane. Agronomy 11:1099. doi:10.3390/agronomy11061099
  • Spagnoletti, F., Carmona, M. A., Tobar-Gómez, N. E., Chiocchio, V., and Lavado, R. S. 2017. Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Appl. Soil Ecol. 121:41–47. doi:10.1016/j.apsoil.2017.09.019
  • Spagnoletti, F. N., Carmona, M. A., Balestrasse, K. B., Chiocchio, V., Giacometti, R., and Lavado, R. S. 2021. The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat. Rhizosphere 19:100369. doi:10.1016/j.rhisph.2021.100369
  • Summerell, B. A., and Burgess, L. W. (1989). Factors influencing survival of Pyrenophora tritici-repentis: Stubble management. Mycological Research, 93(1), 38–40. doi:10.1016/S0953-7562(89)80133-9
  • Szparaga, A. 2023. From Biostimulant to Possible Plant Bioprotectant Agents. Agricultural Engineering 27:87–98. doi:10.2478/agriceng-2023-0007
  • Tarakanov, R., Shagdarova, B., Lyalina, T., Zhuikova, Y., Il’ina, A., Dzhalilov, F., and Varlamov, V. 2023. Protective Properties of Copper-Loaded Chitosan Nanoparticles against Soybean Pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. Polymers (Basel) 15:1100. doi:10.3390/polym15051100.
  • Tarakanov, R., Shagdarova, B., Varlamov, V., and Dzhalilov, F. 2021. Biocidal and resistance-inducing effects of chitosan on phytopathogens. E3S Web Conf. 254:05007. doi:10.1051/e3sconf/202125405007
  • Távora, F. T. P. K., Meunier, A. C., Vernet, A., Portefaix, M., Milazzo, J., Adreit, H., Tharreau, D., Franco, O. L., and Mehta, A. 2022. CRISPR/Cas9-Targeted Knockout of Rice Susceptibility Genes OsDjA2 and OsERF104 Reveals Alternative Sources of Resistance to Pyricularia oryzae. Rice Sci. 29:535–544. doi:10.1016/j.rsci.2022.04.001
  • Tomah, A. A., Zhang, Z., Alamer, I. S. A., Khattak, A. A., Ahmed, T., Hu, M., Wang, D., Xu, L., Li, B., and Wang, Y. 2023. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. Nanomaterials (Basel) 13:2475. doi:10.3390/nano13172475.
  • Tortella, G., Rubilar, O., Pieretti, J. C., Fincheira, P., de Melo Santana, B., Fernández-Baldo, M. A., Benavides-Mendoza, A., and Seabra, A. B. 2023. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics (Basel) 12:338. doi:10.3390/antibiotics12020338.
  • Trezzi-Casa, R., and Carmona, M. A. 2016. Doencas causadas por fungos necrotroficos em folhas. Mancha amarela. In de Melo-Reis E. (Ed.), Manual de Doencas Do Trigo. Etiologia, Sintomatología, Diagnose e Manejo Integrado, (1st ed., p. 139–164. Berthier.
  • Twizeyimana, M., Hammer, P. E., Gachango, E., Craig, K., Espejo, B., Biggs, M. B., Kremer, J., and Ingham, D. J. 2023. Diverse environmental bacteria displaying activity against Phakopsora pachyrhizi, the cause of soybean rust. Front. Plant Sci. 14:1080116. doi:10.3389/fpls.2023.1080116.
  • Tyagi, S., Kumar, R., Kumar, V., Won, S. Y., and Shukla, P. 2021. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food. 12:125–144. doi:10.1080/21645698.2020.1831729.
  • Upadhayay, V. K., Chitara, M. K., Mishra, D., Jha, M. N., Jaiswal, A., Kumari, G., Saipayan, G., Patel, V. K., Naitam, M. G., Singh, A. K., Pareek, N., Taj, G., Maithani, D., Kumar, A., Dasila, H., and Sharma, A. 2023. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front. Microbiol. 14:1133968. doi:10.3389/fmicb.2023.1133968
  • Urban, L., Lauri, F., Ben Hdech, D., and Aarrouf, J. 2022. Prospects for Increasing the Efficacy of Plant Resistance Inducers Stimulating Salicylic Acid. Agronomy 12:3151. doi:10.3390/agronomy12123151
  • Velivelli, S. L. S., Islam, K. T., and Shah, D. M. 2020. Antifungal defensins from Medicago truncatula : structure–activity relationships, modes of action, and biotech applications. In the Model Legume Medicago truncatula (398–408. Wiley. doi:10.1002/9781119409144.ch50
  • Vilela, A. E., de Resende, M. L. V., de Medeiros, F. C. L., Pereira, M. H. d B., Santiago, W. D., de Azevedo Santos, L., dos Santos Botelho, D. M., and Ramalho, T. C. 2022. Association phosphite x fungicide: protection against powdery mildew in soybean plants, translocation and computer simulation. J. Plant Pathol. 104:787–793. doi:10.1007/s42161-022-01086-2
  • Villa-Rodriguez, E., Parra-Cota, F., Castro-Longoria, E., López-Cervantes, J., and de los Santos-Villalobos, S. 2019. Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biol. Control. 132:135–143. doi:10.1016/j.biocontrol.2019.02.012
  • Vitorino, L. C., Silva, F. O., da, Cruvinel, B. G., Bessa, L. A., Rosa, M., Souchie, E. L., and Silva, F. G. 2020. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants (Basel) 9:64. doi:10.3390/plants9010064.
  • Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.-G., and Zhao, K. 2016. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLOS One. 11:e0154027. doi:10.1371/journal.pone.0154027.
  • Wang, S-q., Ma, J., Wang, M., Wang, X-h., Li, Y-q., and Chen, J. 2019. Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize. Journal of Integrative Agriculture 18:2063–2071. doi:10.1016/S2095-3119(19)62603-1
  • Wang, Y., Tang, Q., Pu, L., Zhang, H., and Li, X. 2022. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. Front. Plant Sci. 13:1049803. doi:10.3389/fpls.2022.1049803.
  • Wang, Z., Li, Y., Zhang, B., Gao, X., Shi, M., Zhang, S., Zhong, S., Zheng, Y., and Liu, X. 2023. Functionalized Carbon Dot‐Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray‐Induced Gene Silencing. Adv. Funct. Materials 33:. doi:10.1002/adfm.202213143
  • Ward, B. M. 2015. Effects of Minor Elements on Cercospora kikuchii, Cercospora Leaf Blight and Rust on Soybeans Louisiana State University and Agricultural and Mechanical College. [LSU Master’s Theses].
  • Wei, Z., Abdelrahman, M., Gao, Y., Ji, Z., Mishra, R., Sun, H., Sui, Y., Wu, C., Wang, C., and Zhao, K. 2021. Engineering broad-spectrum resistance to bacterial blight by CRISPR-Cas9-mediated precise homology directed repair in rice. Mol. Plant. 14:1215–1218. doi:10.1016/j.molp.2021.05.012.
  • Win, K. T., Kobayashi, M., Tanaka, F., Takeuchi, K., Oo, A. Z., and Jiang, C.-J. 2022. Identification of Pseudomonas strains for the biological control of soybean red crown root rot. Sci. Rep. 12:14510. doi:10.1038/s41598-022-18905-2
  • Wohlmuth, J., Tekielska, D., Čechová, J., and Baránek, M. 2022. Interaction of the Nanoparticles and Plants in Selective Growth Stages—Usual Effects and Resulting Impact on Usage Perspectives. Plants 11:2405. doi:10.3390/plants11182405
  • Woo, S. L., and Pepe, O. 2018. Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 9:1801. doi:10.3389/fpls.2018.01801.
  • Wytinck, N., Manchur, C. L., Li, V. H., Whyard, S., and Belmonte, M. F. 2020. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Plants (Basel) 9:1780. doi:10.3390/plants9121780.
  • Xu, W., Xu, L., Deng, X., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Sun, R., Pan, Y., Wu, C., and Yang, L. 2021. Biological control of take-all and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens 10:903. doi:10.3390/pathogens10070903
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., and Brown, P. H. 2017. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 7:2049. doi:10.3389/fpls.2016.02049.
  • Yang, M., Han, X., Xie, J., Zhang, S., Lv, Z., Li, B., Shi, L., Zhang, K., and Ge, B. 2022. Field Application of Wuyiencin Against Sclerotinia Stem Rot in Soybean. Front. Sustain. Food Syst. 6:. doi:10.3389/fsufs.2022.930079
  • Yin, C., Jurgenson, J. E., and Hulbert, S. H. 2011. Development of a Host-Induced RNAi System in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici. Mol. Plant. Microbe Interact. 24:554–561. doi:10.1094/MPMI-10-10-0229.
  • Yu, S.-F., Wang, C.-L., Hu, Y.-F., Wen, Y.-C., and Sun, Z.-B. 2022. Biocontrol of Three Severe Diseases in Soybean. Agriculture 12:1391. doi:10.3390/agriculture12091391
  • Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V., and Černák, M. 2016. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process. 36:397–414. doi:10.1007/s11090-015-9684-z
  • Zaidi, N. W., and Singh, U. S. 2017. Trichoderma—an impeccable plant health booster. In A. Anwer (Ed.), Biopesticides and Bioagents.
  • Zakaria, W. G. E., Atia, M. M., Ali, A. Z., Abbas, E. E. A., Salim, B. M. A., Marey, S. A., Hatamleh, A. A., and Elnahal, A. S. M. 2023. Assessing the Effectiveness of Eco-Friendly Management Approaches for Controlling Wheat Yellow Rust and Their Impact on Antioxidant Enzymes. Plants (Basel) 12:2954. doi:10.3390/plants12162954.
  • Zhang, J., Mavrodi, D. V., Yang, M., Thomashow, L. S., Mavrodi, O. V., Kelton, J., and Weller, D. M. 2020. Pseudomonas synxantha 2-79 Transformed with Pyrrolnitrin Biosynthesis Genes Has Improved Biocontrol Activity Against Soilborne Pathogens of Wheat and Canola. Phytopathology® 110:1010–1017. doi:10.1094/PHYTO-09-19-0367-R.
  • Zhang, P., Du, H., Wang, J., Pu, Y., Yang, C., Yan, R., Yang, H., Cheng, H., and Yu, D. 2020. Multiplex CRISPR/Cas9‐mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J. 18:1384–1395. doi:10.1111/pbi.13302.
  • Zhang, S., Tang, W., Jiang, L., Hou, Y., Yang, F., Chen, W., and Li, X. 2015. Elicitor activity of algino-oligosaccharide and its potential application in protection of rice plant (Oryza saliva L.) against Magnaporthe grisea. Biotechnol. Biotechnol. Equip. 29:646–652. doi:10.1080/13102818.2015.1039943
  • Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., and Tang, D. 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91:714–724. doi:10.1111/tpj.13599.
  • Zhang, Y., Zheng, L., and Xie, K. 2023. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens. MSphere 8:. doi:10.1128/msphere.00594-22
  • Zhang, Y.-M., Ye, D.-X., Liu, Y., Zhang, X.-Y., Zhou, Y.-L., Zhang, L., and Yang, X.-L. 2023. Peptides, new tools for plant protection in eco-agriculture. Advanced Agrochem 2:58–78. doi:10.1016/j.aac.2023.01.003
  • Zhao, Z., Shang, P., Mohanraju, P., and Geijsen, N. 2023. Prime editing: advances and therapeutic applications. Trends Biotechnol. 41:1000–1012. doi:10.1016/j.tibtech.2023.03.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.