449
Views
0
CrossRef citations to date
0
Altmetric
Articles

Foliar Fertilization: A Potential Strategy for Improving Plant Salt Tolerance

ORCID Icon & ORCID Icon

References

  • Aazami, M. A., Rasouli, F., and Ebrahimzadeh, A. 2021. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biol. 21:597. doi:10.1186/s12870-021-03379-7
  • Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y., and Elshikh, M. S. 2022. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front. Plant Sci. 13:932861. doi:10.3389/fpls.2022.932861
  • Akram, N. A., Saleem, M. H., Shafiq, S., Naz, H., Farid-Ul-Haq, M., Ali, B., Shafiq, F., Iqbal, M., Jaremko, M., and Qureshi, K. A. 2022. Phytoextracts as crop biostimulants and natural protective agents—A critical review. Sustainability 14:14498. doi:10.3390/su142114498
  • Al-Juthery, H. W., Lahmod, N. R., and Al-Taee, R. A. 2021. Intelligent, nano-fertilizers: a new technology for improvement nutrient use efficiency (article review). IOP Conf. Ser: Earth Environ. Sci. 735:012086. doi:10.1088/1755-1315/735/1/012086
  • Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., and Al-Doss, A. 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: a review. Agronomy 11:2299. doi:10.3390/agronomy11112299
  • Allied Market Research. 2020. Foliar fertilizers market by type (nitrogenous, phosphatic, potassic, micronutrients, and others), physical form (liquid and dry), composition (organic and inorganic), crop type (cereals grains, oilseeds pulses, fruits vegetables, and others), and region: global opportunity analysis and industry forecast, 2019–2026. Retrieved from https://www.alliedmarketresearch.com/foliar-fertilizers-market.
  • Alnusairi, G. S. H., Mazrou, Y. S. A., Qari, S. H., Elkelish, A. A., Soliman, M. H., Eweis, M., Abdelaal, K., El-Samad, G. A., Ibrahim, M. F. M., and ElNahhas, N. 2021. Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants 10:1693. doi:10.3390/plants10081693
  • Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N., and Al-Otaibi, A. 2019. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 139:1–10. doi:10.1016/j.plaphy.2019.03.008
  • Alshaal, T., and El-Ramady, H. 2017. Foliar application: from plant nutrition to biofortification. EBSS 0:0–0. doi:10.21608/jenvbs.2017.1089.1006
  • Amjad, M., Akhtar, J., Haq, M. A. U., Imran, S., and Jacobsen, S. E. 2014. Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk. J. Biol. 38:208–218. doi:10.3906/biy-1305-54
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156:64–77. doi:10.1016/j.plaphy.2020.08.042
  • Aslam, A., Khan, S., Ibrar, D., Irshad, S., Bakhsh, A., Gardezi, S. T. R., Ali, M., Hasnain, Z., Al-Hashimi, A., Noor, M. A., Brestic, M., Skalicky, M., and Zuan, A. T. K. 2021. Defensive impact of foliar applied potassium nitrate on growth linked with improved physiological and antioxidative activities in sunflower (Helianthus annuus L.) hybrids grown under salinity stress. Agronomy 11:2076. doi:10.3390/agronomy11102076
  • Avellan, A., Yun, J., Morais, B. P., Clement, E. T., Rodrigues, S. M., and Lowry, G. V. 2021. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ. Sci. Technol. 55:13417–13431. doi:10.1021/acs.est.1c00178
  • Azam, N., Khan, M. W., Sardar, S., Yousaf, I., Zahid, A., Ismail, A., Summiya, S., Mushtaq, R., and Javed, M. S. 2022. New insights for improving agriculture soils through nanotechnology. Haya: Saudi J. Life Sci. 7:244–248. doi:10.36348/sjls.2022.v07i09.001
  • Azim, Z., Singh, N. B., Singh, A., Amist, N., Khare, S., Yadav, R. K., Bano, C., Yadav, V. and Niharika, 2023. A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: current status and future prospectus. J. Plant Biochem. Biotechnol. 32:211–224. doi:10.1007/s13562-022-00800-6
  • Bana, R. S., Jat, G. S., Grover, M., Bamboriya, S. D., Singh, D., Bansal, R., Choudhary, A. K., Kumar, V., Laing, A. M., Godara, S., Bana, R. C., Kumar, H., Kuri, B. R., Yadav, A., and Singh, T. 2022. Foliar nutrient supplementation with micronutrient-embedded fertilizer increases biofortification, soil biological activity and productivity of eggplant. Sci. Rep. 12:5146. doi:10.1038/s41598-022-09247-0
  • Behtash, F., Hajizadeh, H. S., and Tarighi, B. 2023. Modulation of nutritional and biochemical status of hydroponically grown Cucurbita pepo L. by calcium nitrate under saline conditions. Hortic. Sci. 50:127–141. doi:10.17221/105/2021-HORTSCI
  • Bello, S. K., Alayafi, A. H., Al-Solaimani, S. G., and Abo-Elyousr, K. A. 2021. Mitigating soil salinity stress with gypsum and bio-organic amendments: a review. Agronomy 11:1735. doi:10.3390/agronomy11091735
  • Bons, H. K., and Sharma, A. 2023. Impact of foliar sprays of potassium, calcium, and boron on fruit setting behavior, yield, and quality attributes in fruit crops: a review. J. Plant Nutr. 46:3232–3246. doi:10.1080/01904167.2023.2192242
  • Bremner, J. M. 1995. Recent research on problems in the use of urea as a nitrogen fertilizer. Fert. Res. 42:321–329. doi:10.1007/BF00750524
  • Canny, M. J. 1995. Apoplastic water and solute movement: new rules for an old space. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:215–236. doi:10.1146/annurev.pp.46.060195.001243
  • Chen, Y., Liu, Y., Ge, J., Li, R., Zhang, R., Zhang, Y., Huo, Z., Xu, K., Wei, H., and Dai, Q. 2022. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Front. Plant Sci. 13:982637. doi:10.3389/fpls.2022.982637
  • Darrhal, N., Ait Houssa, A., Dhassi, K., Amlal, F., Ouichou, A., Mounsif, M., and Drissi, S. 2022. Nutrient status of forage corn (Zea mays L.) and fodder beet (Beta vulgaris L.) irrigated with saline water. Commun. Soil Sci. Plant Anal. 53:2734–2748. doi:10.1080/00103624.2022.2072870
  • Demidchik, V., and Tester, M. 2002. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128:379–387. doi:10.1104/pp.010524
  • de Souza Freitas, W. E., de Oliveira, A. B., Mesquita, R. O., de Carvalho, H. H., Prisco, J. T., and Gomes-Filho, E. 2019. Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Sci. Hortic. 257:108764. doi:10.1016/j.scienta.2019.108764
  • dos Santos, L. A., Batista, B. L., and Lobato, A. K. D. S. 2023. 24-Epibrasinolide delays chlorophyll degradation and stimulates the photosynthetic machinery in magnesium-stressed soybean plants. J. Plant Growth Regul. 42:183–198. doi:10.1007/s00344-021-10539-4
  • Driesen, E., Van den Ende, W., De Proft, M., and Saeys, W. 2020. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: a review. Agronomy 10:1975. doi:10.3390/agronomy10121975
  • Eichert, T., and Fernández, V. 2023. Uptake and release of elements by leaves and other aerial plant parts. In Marschner’s Mineral Nutrition of Plants; Academic Press: Amsterdam, pp 105–129.
  • Eichert, T., and Goldbach, H. E. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiol. Plant. 132:491–502. doi:10.1111/j.1399-3054.2007.01023.x
  • Eichert, T., Kurtz, A., and Goldbach, H. E. 2006. Investigations on the contribution of the stomatal pathway to foliar uptake. Acta Hortic. 721:307–312. doi:10.17660/ActaHortic.2006.721.43
  • El-Beltagi, H. S., Al-Otaibi, H. H., Parmar, A., Ramadan, K. M., Lobato, A. K. D. S., and El-Mogy, M. M. 2023. Application of potassium humate and salicylic acid to mitigate salinity stress of common bean. Life 13:448. doi:10.3390/life13020448
  • El-Fouly, M. M., and El-Nour, A. 2021. Foliar feeding with micronutrients to overcome adverse salinity effects on growth and nutrients uptake of bean (Phaseolus vulgaris). Egypt. J. Agron. 0:0–0. doi:10.21608/agro.2021.49359.1238
  • El-Hefnawy, S. F. 2020. Nano NPK and growth regulator promoting changes in growth and mitotic index of pea plants under salinity stress. J. Agric. Chem. Biotechnol. 11:263–269. doi:10.21608/jacb.2020.118213
  • Elkelish, A. A., Alnusaire, T. S., Soliman, M. H., Gowayed, S., Senousy, H. H., and Fahad, S. 2019. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. J. Appl. Bot. Food Qual. 92:258–266.
  • EL Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S., and Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Eds. Springer: Cham. doi:10.1007/978-3-030-49732-3_20
  • El-Sharkawy, M., EL-Aziz, M. A., and Khalifa, T. 2021. Effect of nano-zinc application combined with sulfur and compost on saline-sodic soil characteristics and faba bean productivity. Arab. J. Geosci. 14:1–14. doi:10.1007/s12517-021-07564-8
  • Fact, M. R. 2020. Foliar fertilizers market forecast, trend analysis competition tracking - global market insights 2020 to 2030. Retrieved from https://www.factmr.com/report/1031/foliar-fertilizer-market.
  • Fagodiya, R.K., Kumar, A., Kumari, S., Medhi, K., and Shabnam, A.A. 2020. Role of nitrogen and its agricultural management in changing environment. In Contaminants in Agriculture; Naeem, M., Ansari, A., Gill, S., Eds. Springer, Cham, Switzerland, pp 247–270.
  • Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P., and Yu, F. 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 161:122–130. doi:10.1016/j.plaphy.2021.02.002
  • Fernández, V., Bahamonde, H. A., Javier Peguero-Pina, J., Gil-Pelegrín, E., Sancho-Knapik, D., Gil, L., Goldbach, H. E., and Eichert, T. 2017. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 68:5293–5306. doi:10.1093/jxb/erx302
  • Fernández, V., and Brown, P. H. 2013. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front. Plant Sci. 4:289. doi:10.3389/fpls.2013.00289
  • Fernández, V., Gil‐Pelegrín, E., and Eichert, T. 2021. Foliar water and solute absorption: an update. Plant J. 105:870–883. doi:10.1111/tpj.15090
  • Ghassemi-Golezani, K., and Farhangi-Abriz, S. 2021. Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress. Rhizosphere 19:100416. doi:10.1016/j.rhisph.2021.100416
  • Gul, H., Arif, M., Husna, Y. K., and Sayyed, A. 2019. Effect of boron, manganese and iron on growth, biochemical constituents and ionic composition of cowpea grown under salinity. J. Appl. Environ. Biol. Sci. 9:1–12.
  • Guo, X., Zhou, G., Zhu, G., and Jiao, X. 2019. Effects of calcium on emergence and seedling growth of castor bean under salinity stress. Current Sci. 116:2028–2035. doi:10.18520/cs/v116/i12/2028-2035
  • Haghighi, M., and Naghavi, B. 2019. Effect of Ca and nano-Ca spray on reducing the effects of salinity stress on tomato at vegetative growth stage in hydro culture. J. Hortic. Sci. 32:507–518.
  • Hajihashemi, S., and Kazemi, S. 2022. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant Biol. 22:148. doi:10.1186/s12870-022-03531-x
  • Hasan, M., Alahi, A., and Islam, M. 2022. Effects of NPK fertilizer as foliar spray on the growth and yield of spinach (Spinacia oleracea, L.). Bigdataagr. 4:32–38. doi:10.26480/bda.01.2022.32.38
  • Hassanpouraghdam, M. B., Mehrabani, L. V., and Tzortzakis, N. 2020. Foliar application of nano-zinc and iron affects physiological attributes of Rosmarinus officinalis and quietens NaCl salinity depression. J. Soil Sci. Plant Nutr. 20:335–345. doi:10.1007/s42729-019-00111-1
  • Hidangmayum, A., Dwivedi, P., Kumar, P., and Upadhyay, S. K. 2023. Seed priming and foliar application of chitosan ameliorate drought stress responses in mungbean genotypes through modulation of morpho-physiological attributes and increased antioxidative defense mechanism. J. Plant Growth Regul 42:6137–6154. doi:10.1007/s00344-022-10792-1
  • Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J. L., He, F., and Rico, C. M. 2021. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci: Nano 8:1196–1210. doi:10.1039/D0EN01129K
  • Hu, Y., Bellaloui, N., and Kuang, Y. 2023. Factors affecting the efficacy of foliar fertilizers and the uptake of atmospheric aerosols, volume II. Front. Plant Sci. 14:1146853. doi:10.3389/fpls.2023.1146853
  • Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., and Wang, L. 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9:3890. doi:10.1038/s41598-019-40362-7
  • Hussain, N., Sohail, Y., Shakeel, N., Javed, M., Bano, H., Gul, H. S., Zafar, Z. U., Frahat Zaky Hassan, I., Ghaffar, A., Athar, H-u-R., and Ajaj, R. 2022. Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Sci. Rep. 12:12677. doi:10.1038/s41598-022-16922-9
  • Hussein, M.H., El-Ashry, S. M., El-Faham, S. Y., and El-Dok, S. 2019. Wheat plant dry matter and grains nutrients status and its responses to nanofertilizer under salinity condition. Plant Arch. 19:2053–2063.
  • Ibrahim, G. A., and Hegab, R. 2022. Improving yield of Barley using bio and nano fertilizers under saline conditions. Egyptj. Soil Sci. 62:41–53. doi:10.21608/ejss.2022.124377.1496
  • Iqbal, A., Fahad, S., Iqbal, M., Alamzeb, M., Ahmad, A., Anwar, S., and Song, M. 2020. Special adaptive features of plant species in response to drought. In Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms; Hasanuzzaman, M., Tanveer, M., Eds. Springer: Cham, pp 77–118.
  • Ishfaq, M., Kiran, A., Ur Rehman, H., Farooq, M., Ijaz, N. H., Nadeem, F., Azeem, I., Li, X., and Wakeel, A. 2022. Foliar nutrition: potential and challenges under multifaceted agriculture. Environ. Exp. Bot. 200:104909. doi:10.1016/j.envexpbot.2022.104909
  • Islam, M. M., Jahan, K., Sen, A., Urmi, T. A., Haque, M. M., Ali, H. M., Siddiqui, M. H., and Murata, Y. 2023. Exogenous application of calcium ameliorates salinity stress tolerance of tomato (Solanum lycopersicum L.) and enhances fruit quality. Antioxidants 12:558. doi:10.3390/antiox12030558
  • Jafarnejadi, A., Rezaei, H., and Naderi, A. 2015. Evaluation of sulfur fertilizer on canola yield under salinity conditions. J. Crop Nutr. Sci. 1:56–62.
  • Kannan, S. 2010. Foliar fertilization for sustainable crop production. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed. INRA-CMSE-PME, Dijon CX, France, pp. 371–402.
  • Karlsons, A., Osvalde, A., Cekstere, G., and Āboliņa, L. 2023. Effects of Ca sprays on fruit Ca content and yield of tomato variety susceptible to blossom-end rot. Plants 12:1640. doi:10.3390/plants12081640
  • Kaya, C., and Higgs, D. 2002. Improvements in physiological and nutritional developments of tomato cultivars grown at high zinc by foliar application of phosphorus and iron. J. Plant Nutr. 25:1881–1894. doi:10.1081/PLN-120013281
  • Kaya, C., Kirnak, H., and Higgs, D. 2001. An experiment to investigate the ameliorative effects of foliar potassium phosphate sprays on salt-stressed strawberry plants. Aust. J. Agric. Res. 52:995–1000. doi:10.1071/AR00164
  • Kaya, C., Ak, B. E., and Higgs, D. 2003. Response of salt‐stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J. Plant Nutr. 26:543–560. doi:10.1081/PLN-120017664
  • Khan, F., Siddique, A. B., Shabala, S., Zhou, M., and Zhao, C. 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 12:2861. doi:10.3390/plants12152861
  • Khan, N. A., Khan, M. I. R., Asgher, M., Fatma, M., Massod, A., and Syeed, S. 2014. Salinity tolerance in plants: revisiting the role of sulfur metabolites. J. Plant Biochem. Physiol. 2:1. doi:10.4172/2329-9029.1000120
  • Kim, Y., Yu, J., Jeong, S., Kim, J., Park, S., Bae, H., Rhee, S.-K., Unno, T., Ni, S.-Q., and Lee, T. 2021. Differences in the effects of calcium and magnesium ions on the anammox granular properties to alleviate salinity stress. Appl. Sci. 12:19. doi:10.3390/app12010019
  • Kochhar, S. L., and Gujral, S. K. 2020. Plant Physiology: Theory and Applications. Cambridge University Press: Cambridge.
  • Krolikowski, K. A. 2001. A genetic analysis of hothead, a mutation causing organ fusion in Arabidopsis thaliana, implicates a cuticle defect in the mutant and tentatively identifies the gene sequence. Harvard University Thesis.
  • Kumar, Y., Tiwari, K. N., Singh, T., and Raliya, R. 2021. Nanofertilizers and their role in sustainable agriculture. Apsr. 23:238–255. doi:10.47815/apsr.2021.10067
  • Kumari, S., Chhillar, H., Chopra, P., Khanna, R. R., and Khan, M. I. R. 2021. Potassium: a track to develop salinity tolerant plants. Plant Physiol. Biochem. 167:1011–1023. doi:10.1016/j.plaphy.2021.09.031
  • Lee, C.-K., Seo, K.-W., Lee, G.-J., Choi, S.-U., Ahn, B.-K., Ahn, M.-S., Seo, D.-S., and Yun, S.-I. 2019. Nutrient uptake and growth of watermelons in DTPA-treated saline soil in a plastic film greenhouse. Hst. 37:32–41. doi:10.12972/kjhst.20190004
  • Li, C., Wang, P., Lombi, E., Cheng, M., Tang, C., Howard, D. L., Menzies, N. W., and Kopittke, P. M. 2018. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. J. Exp. Bot. 69:2717–2729. doi:10.1093/jxb/ery085
  • Li, C., Wu, J., Blamey, F. P. C., Wang, L., Zhou, L., Paterson, D. J., van der Ent, A., Fernández, V., Lombi, E., Wang, Y., and Kopittke, P. M. 2021. Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. J. Exp. Bot. 72:5079–5092. doi:10.1093/jxb/erab180
  • Li, Y., Li, X., Xiao, Y., Zhao, B., and Wang, L. 2009. Advances in study on mechanism of foliar nutrition and development of foliar fertilizer application. Sci. Agric. Sin. 42:162–172.
  • Lovatt, C. J. 2013. Properly timing foliar-applied fertilizers increases efficacy: a review and update on timing foliar nutrient applications to citrus and avocado. Hortte. 23:536–541. doi:10.21273/HORTTECH.23.5.536
  • Luo, Z., Kong, X., Dai, J., and Dong, H. 2015. Soil plus foliar nitrogen application increases cotton growth and salinity tolerance. J. Plant Nutr. 38:443–455. doi:10.1080/01904167.2014.912324
  • Ma, T., Chen, K., He, P., Dai, Y., Yin, Y., Peng, S., Ding, J., Yu, S., and Huang, J. 2022. Sunflower photosynthetic characteristics, nitrogen uptake, and nitrogen use efficiency under different soil salinity and nitrogen applications. Water 14:982. doi:10.3390/w14060982
  • Mahlooji, M. 2021. Agrophysiological barley traits associated with flag leaf temperature and canopy light interception under salinity of irrigation water and zinc foliar application. J. Plant Proc. Func. 10:25–34.
  • Majeed, A., and Muhammad, Z. 2019. Salinity: a major agricultural problem—causes, impacts on crop productivity and management strategies. In Plant Abiotic Stress Tolerance; Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H., Eds. Springer: Cham. doi:10.1007/978-3-030-06118-0_3
  • Mayer, A. 1874. Über die Aufnahme von Ammoniak durch oberirdische Pflanzentheile. Landw. Vers. Sta. 17:329–340.
  • Melo, A. S., Yule, T. S., Barros, V. A., Rivas, R., and Santos, M. G. 2021. C3-species Calotropis procera increase specific leaf area and decrease stomatal pore size, alleviating gas exchange under drought and salinity. Acta Physiol. Plant. 43:140. doi:10.1007/s11738-021-03312-3
  • Mengel, K. 2002. Alternative or complementary role of foliar supply in mineral nutrition. Acta Hortic. 594:33–47. doi:10.17660/ActaHortic.2002.594.1
  • Milashi, L. R., Javid, M. G., Alahdadi, I., and Darbandi, A. I. 2020. Alleviation of salt stress and improvement of Fe accumulation in wheat grain, using slow-release fertilizer enriched with Fe. J. Plant Nutr. 43:2990–3001. doi:10.1080/01904167.2020.1799007
  • Mohamed, D., Fergany, M., Elhabbasha, E. F., and El-Temsah, M. 2022. Productivity improvement of canola genotypes under salinity stress conditions by integration between mineral and nano-scale forms of nitrogen fertilizer. Arab Univ. J. Agric. Sci. 0:0–0. doi:10.21608/ajs.2022.140893.1481
  • Mohammed, B. A., Khandaker, M. M., Arshad, A. M., Nudin, N. F. H., Majrashi, A., and Mohd, K. S. 2023. Effects of foliar NPK application on growth, yield and nutrient content of sweet corn grown on Rengam Series soil. Basrah J. Agric. Sci. 36:254–270. doi:10.37077/25200860.2023.36.1.20
  • Mohanavelu, A., Naganna, S. R., and Al-Ansari, N. 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture 11:983. doi:10.3390/agriculture11100983
  • Molnár, K., Biró-Janka, B., Domokos, E., Nyárádi, I. I., Fodorpataki, L., Stoie, A., and Duda, M. M. 2023. Effects of seed priming and foliar treatment with ascorbate, cysteine, and triacontanol on canola (Brassica napus L.) under field conditions. Horticulturae 9:207. doi:10.3390/horticulturae9020207
  • Mordor Intelligence. 2021. Global foliar fertilizer market size share analysis. Retrieved from https://www.mordorintelligence.com/industry-reports/foliar-fertilizer-market.
  • Mukhtar, I., Shahid, M. A., Khan, M. W., Balal, R. M., Iqbal, M. M., and Naz, T., and A. H. H. 2016. Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil Environ. 35:56–64.
  • Murtaza, D. F., Roșculete, E., Roșculete, C. A., and Păunescu, G. 2023. Foliar fertilization-an integral part of complex and integrated fertilizations–a review. Aamc. 52:100–107. doi:10.52846/aamc.v52i2.1395
  • Nasrallah, A. K., Kheder, A. A., Kord, M. A., Fouad, A. S., El-Mogy, M. M., and Atia, M. A. 2022. Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulturae 8:75. doi:10.3390/horticulturae8010075
  • Nawaz, F., Shehzad, M. A., Majeed, S., Ahmad, K. S., Aqib, M., Usmani, M. M., and Shabbir, R. N. 2020. Role of mineral nutrition in improving drought and salinity tolerance in field crops. In Agronomic Crops: Volume 3: Stress Responses and Tolerance; Hasanuzzaman, M., Ed. Springer: Singapore, pp 129–147.
  • Nawaz, M., Hassan, M. U., Chattha, M. U., Mahmood, A., Shah, A. N., Hashem, M., Alamri, S., Batool, M., Rasheed, A., Thabit, M. A., Alhaithloul, H. A. S., and Qari, S. H. 2022. Trehalose: a promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective. Mol. Biol. Rep. 49:11255–11271. doi:10.1007/s11033-022-07681-x
  • Naz, T., Mazhar Iqbal, M., Tahir, M., Hassan, M. M., Rehmani, M. I. A., Zafar, M. I., Ghafoor, U., Qazi, M. A., EL Sabagh, A., and Sakran, M. I. 2021. Foliar application of potassium mitigates salinity stress conditions in spinach (Spinacia oleracea L.) through reducing NaCl toxicity and enhancing the activity of antioxidant enzymes. Horticulturae 7:566. doi:10.3390/horticulturae7120566
  • Naz, T., Iqbal, M. M., Fahad, S., Akhtar, J., Saqib, M., Alamri, S., Siddiqui, M. H., Saud, S., Khattak, J. Z. K., Ali, S., Hassan, S., Nawaz, T., Hammad, H. M., Banout, J., Wu, C., Wang, D., Datta, R., Danish, S., and Nasim, W. 2023. Bio-fortification of two wheat cultivars with iron and zinc through their soil and foliar application in salt-factored soil: growth, ionic, physiological, and biochemical modifications. J. Plant Growth Regul. 42:5727–5745. doi:10.1007/s00344-023-10955-8
  • Niu, J., Liu, C., Huang, M., Liu, K., and Yan, D. 2021. Effects of foliar fertilization: a review of current status and future perspectives. J. Soil Sci. Plant Nutr. 21:104–118. doi:10.1007/s42729-020-00346-3
  • Noreen, S., Fatima, Z., Ahmad, S., Athar, H. U. R., and Ashraf, M. 2018. Foliar application of micronutrients in mitigating abiotic stress in crop plants. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds. Springer: Singapore. doi:10.1007/978-981-10-9044-8_3
  • O’Dell, C. 2005. Foliar feeding of nutrients. Hortic. Sci. 69:302–308.
  • Oosterhuis, D. 2009. Foliar fertilization: mechanisms and magnitude of nutrient uptake. Proceedings of the fluid forum, Phoenix, AZ; pp 15–17.
  • Othman, Y. A., Hani, M. B., Ayad, J. Y., and St Hilaire, R. 2023. Salinity level influenced morpho-physiology and nutrient uptake of young citrus rootstocks. Heliyon 9:e13336. doi:10.1016/j.heliyon.2023.e13336
  • Panda, J., Nandi, A., Mishra, S. P., Pal, A. K., Pattnaik, A. K., and Jena, N. K. 2020. Effects of nano fertilizer on yield, yield attributes and economics in tomato (Solanum lycopersicum L.). Intjcurrmicrobiolappsci. 9:2583–2591. doi:10.20546/ijcmas.2020.905.295
  • Perveen, S., Iqbal, N., Saeed, M., Zafar, S., and Arshad, Z. 2018. Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid DTC) under salt stress. Braz. J. Bot. 41:805–815. doi:10.1007/s40415-018-0506-4
  • Pooja, A. P., and Ameena, M. 2020. Nutrient and PGR based foliar feeding for yield maximization in pulses: a review. AG. 42:32–41. doi:10.18805/ag.R-2056
  • Poria, V., Kumar, S., Prasanna, R., Yadav, S., Maurya, P. K., and Singh, S. 2023. Salinity mitigation using microbial inoculants. In Bioinoculants: Biological Option for Mitigating Global Climate Change; Springer Nature Singapore: Singapore, pp 163–178.
  • Rady, M. M., Mossa, A. T. H., Youssof, A. M., Osman, A. S., Ahmed, S. M., and Mohamed, I. A. 2023. Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants. Sci. Hortic. 308:111609. doi:10.1016/j.scienta.2022.111609
  • Rasheed, F., Anjum, N. A., Masood, A., Sofo, A., and Khan, N. A. 2022. The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J. Plant Growth Regul. 41:1891–1904. doi:10.1007/s00344-020-10257-3
  • Riffat, A., and Ahmad, M. S., A. 2020. Regulation of antioxidant activity in maize (Zea mays L.) by exogenous application of sulfur under saline conditions. Turk. J. Bot. 44:62–75. doi:10.3906/bot-1902-15
  • Rios, J. J., Yepes-Molina, L., Martinez-Alonso, A., and Carvajal, M. 2020. Nanobiofertilization as a novel technology for highly efficient foliar application of Fe and B in almond trees. R Soc. Open Sci. 7:200905. doi:10.1098/rsos.200905
  • Sadeghi, F., Rezeizad, A., and Rahimi, M. 2021. Effect of zinc and magnesium fertilizers on the yield and some characteristics of wheat (Triticum aestivum L.) seeds in two years. Int. J. Agron. 2021:1–6. doi:10.1155/2021/885722
  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., and Sarwar, M. I. 2019. A review: impact of salinity on plant growth. Nat. Sci. 17:34–40.
  • Schreel, J. D., Leroux, O., Goossens, W., Brodersen, C., Rubinstein, A., and Steppe, K. 2020. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. Plant J. 103:769–780. doi:10.1111/tpj.14770
  • Serag, A. H., El-Samet, R. M., and Seadh, A. K. 2022. Impacts of sulfur fertilization as soil addition, potassium foliar application and their interactions on rice plant under saline condition. J. Soil Sci. Agric. Eng. 13:347–354. doi:10.21608/jssae.2022.165652.1107
  • Serag, A. H., Seadh, A. K., and El-Samet, R. M. 2021. Using anti-stress substances and zinc spray under phosphoric acid fertigation to grow under salinity stress of sunflower plant (Helianthus annuus L.). Alex. Sci. Exch. J. 42:997–1011. doi:10.21608/asejaiqjsae.2021.212548
  • Shabala, S., Demidchik, V., Shabala, L., Cuin, T. A., Smith, S. J., Miller, A. J., Davies, J. M., and Newman, I. A. 2006. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol. 141:1653–1665. doi:10.1104/pp.106.082388
  • Shaheen, F., Ashraf, M. Y., Khan, Z. I., Ahmed, K., Bashir, H., Nadeem, M., and Saleem, I. 2020. Improving yield of wheat (Triticum aestivum L.) genotypes by foliar application of potassium and salicylic acid under salinity. Fresenius Environ. Bull. 29:2433–2441.
  • Shahrajabian, M. H., Sun, W., and Cheng, Q. 2022. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef Univ. J. Basic Appl. Sci. 11:1–10.
  • Sharavdorj, K., Jang, Y., Byambadorj, S. O., and Cho, J. W. 2022. The effect of MgSO4 and CaSO4 on seedlings of forage crops under environmental stress. Plant Physiol. Rep. 27:702–716. doi:10.1007/s40502-022-00691-8
  • Shi, X.L., Zhou, D.Y., Guo, P., Zhang, H., Dong, J.L., Ren, J.Y., Jiang, C.J., Zhong, C., Zhao, X.H., and Yu, H.Q. 2020. External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynt. 58:1141–1149. doi:10.32615/ps.2020.070
  • Sikder, R. K., Xiang-Ru, W., Heng-Heng, Z., Hui-Ping, G., Qiang, D., Ding-Sha, J., and Mei-Zhen, S. 2022. Influence of nitrogen on the growth and yield of cotton under salinity stress. J. Plant Nutr. 45:1181–1197. doi:10.1080/01904167.2021.1994598
  • Song, X., Zhou, G., Ma, B.-L., Wu, W., Ahmad, I., Zhu, G., Yan, W., and Jiao, X. 2019. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 9:115. doi:10.3390/agronomy9030115
  • Song, Y., Zheng, C., Li, S., Chen, J., and Jiang, M. 2023. Chitosan-magnesium oxide nanoparticles improve salinity tolerance in rice (Oryza sativa L.). ACS Appl. Mater. Interfaces. 15:20649–20660. doi:10.1021/acsami.3c00043
  • Swietlik, D., and Faust, M. 1984. Foliar nutrition of fruit crops. Hort. Rev. 6:287–355.
  • Syed, A., Sarwar, G., Shah, S. H., and Muhammad, S. 2021. Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Commun. Soil Sci. Plant Anal. 52:183–200. doi:10.1080/00103624.2020.1854294
  • Talaat, N. B. 2021. Polyamine and nitrogen metabolism regulation by melatonin and salicylic acid combined treatment as a repressor for salt toxicity in wheat (Triticum aestivum L.) plants. Plant Growth Regul. 95:315–329. doi:10.1007/s10725-021-00740-6
  • Vafadar, F., Amooaghaie, R., Ehsanzadeh, P., Ghanadian, M., Talebi, M., and Ghanati, F. 2020. Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. Phytochemistry 177:112422. doi:10.1016/j.phytochem.2020.112422
  • Wallace, T. 1928. Investigations on chlorosis of fruit trees. IV. The control of lime-induced chlorosis on the field. J. Pomol. Hort. Sci. 7:251–269. doi:10.1080/03683621.1928.11513343
  • Wang, X., Shen, C., Meng, P., Tan, G., and Lv, L. 2021. Analysis and review of trichomes in plants. BMC Plant Biol. 21:70. doi:10.1186/s12870-021-02840-x
  • Witte, C. P., Tiller, S. A., Taylor, M. A., and Davies, H. V. 2002. Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol. 128:1129–1136. doi:10.1104/pp.010506
  • Xuan, T. D., Huong, C. T., Quan, N. V., Anh, L. H., Khanh, T. D., and Rayee, R. 2022. Improvement of salinity tolerance in rice seedlings by exogenous magnesium sulfate application. Soil Syst. 6:69. doi:10.3390/soilsystems6030069
  • Zhang, Y., Fang, J., Wu, X., and Dong, L. 2018. Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol. 18:375. doi:10.1186/s12870-018-1586-9
  • Zhang, C., Lu, X., Yan, H., Gong, M., Wang, W., Chen, B., Ma, S., and Li, S. 2023. Nitrogen application improves salt tolerance of grape seedlings via regulating hormone metabolism. Physiol. Plant. 175:e13896. doi:10.1111/ppl.13896
  • Zhao, D., Gao, S., Zhang, X., Zhang, Z., Zheng, H., Rong, K., Zhao, W., and Khan, S. A. 2021. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant. Soil Environ. 67:61–70. doi:10.17221/467/2020-PSE
  • Zulfiqar, U., Hussain, S., Ishfaq, M., Ali, N., Yasin, M. U., and Ali, M. A. 2021. Foliar manganese supply enhances crop productivity, net benefits, and grain manganese accumulation in direct-seeded and puddled transplanted rice. J. Plant Growth Regul. 40:1539–1556. doi:10.1007/s00344-020-10209-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.