237
Views
0
CrossRef citations to date
0
Altmetric
Articles

Progress and future impacts on genomic dissection of soybean domestication and improvement

, , , , , & ORCID Icon show all

References

  • An, J., Fang, C., Yuan, Z., Hu, Q., Huang, W., Li, H., Ma, R., Wang, L., Su, T., Li, S., Wang, L., Duan, Y., Wang, Y., Zhang, C., Xu, R., Zhang, D., Cao, Y., Hou, J., Kong, F., and Sun, L. 2023. A retrotransposon insertion in the Mao1 promoter results in erect pubescence and higher yield in soybean. Proc. Natl. Acad. Sci. U S A. 120:e2210791120.
  • Basnet, P., Meinhardt, C.G., Usovsky, M., Gillman, J.D., Joshi, T., Song, Q., Diers, B., Mitchum, M.G., and Scaboo, A.M. 2022. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. Theor. Appl. Genet. 135:2025–2039. doi:10.1007/s00122-022-04091-2
  • Bayless, A.M., Smith, J.M., Song, J., McMinn, P.H., Teillet, A., August, B.K., and Bent, A.F. 2016. Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1. Proc. Natl. Acad. Sci. U S A. 113:E7375–E7382. doi:10.1073/pnas.1610150113
  • Bonawitz, N. D., Ainley, W. M., Itaya, A., Chennareddy, S. R., Cicak, T., Effinger, K., Jiang, K., Mall, T. K., Marri, P. R., Samuel, J. P., Sardesai, N., Simpson, M., Folkerts, O., Sarria, R., Webb, S. R., Gonzalez, D. O., Simmonds, D. H., and Pareddy, D. R. 2019. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Plant Biotechnol. J. 17:750–761. doi:10.1111/pbi.13012
  • Bu, T., Lu, S., Wang, K., Dong, L., Li, S., Xie, Q., Xu, X., Cheng, Q., Chen, L., and Fang, C. 2021. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc. Natl. Acad. Sci. U S A. 118:e2010241118.
  • Caldwell, B.E., Brim, C.A., and Ross, J.P. 1960. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron. J. 52:635–636. doi:10.2134/agronj1960.00021962005200110007x
  • Cao, X., Xie, H., Song, M., Lu, J., Ma, P., Huang, B., Wang, M., Tian, Y., Chen, F., Peng, J., Lang, Z., Li, G., and Zhu, J.-K. 2023. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation (Camb). 4:100345. doi:10.1016/j.xinn.2022.100345
  • Chamarthi, S.K., Kaler, A.S., Abdel-Haleem, H., Fritschi, F.B., Gillman, J.D., Ray, J.D., Smith, J.R., Dhanapal, A.P., King, C.A., and Purcell, L.C. 2021. Identification and confirmation of loci associated with canopy wilting in soybean using genome-wide association mapping. Front. Plant Sci. 12:698116. doi:10.3389/fpls.2021.698116
  • Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667–697. doi:10.1146/annurev-arplant-050718-100049
  • Childs, S.P., Buck, J.W., and Li, Z. 2018. Breeding soybeans with resistance to soybean rust (Phakopsora pachyrhizi). Plant Breed. 137:250–261. doi:10.1111/pbr.12595
  • Cho, E., and Goodman, R. 1979. Strains of soybean mosaic virus: Classification based on virulence in resistant soybean cultivars. Phytopathology. 69:467–470. doi:10.1094/Phyto-69-467
  • Cho, Y.B., Jones, S.I., and Vodkin, L.O. 2017. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell. 29:708–725. doi:10.1105/tpc.17.00162
  • Clough, S.J., Tuteja, J.H., Li, M., Marek, L.F., Shoemaker, R.C., and Vodkin, L.O. 2004. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome 47:819–831. doi:10.1139/g04-049
  • Cober, E.R., Tanner, J.W., and Voldeng, H.D. 1996. Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop. Sci. 36:601–605. doi:10.2135/cropsci1996.0011183X003600030013x
  • Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K., Clemente, T. E., Diers, B. W., Jiang, J., Hudson, M. E., and Bent, A. F. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209. doi:10.1126/science.1228746
  • Do, P.T., Nguyen, C.X., Bui, H.T., Tran, L.T.N., Stacey, G., Gillman, J.D., Zhang, Z.J., and Stacey, M.G. 2019. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 19:311. doi:10.1186/s12870-019-1906-8
  • Dong, L., Fang, C., Cheng, Q., Su, T., Kou, K., Kong, L., Zhang, C., Li, H., Hou, Z., Zhang, Y., Chen, L., Yue, L., Wang, L., Wang, K., Li, Y., Gan, Z., Yuan, X., Weller, J. L., Lu, S., Kong, F., and Liu, B. 2021. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat. Commun. 12:5445. doi:10.1038/s41467-021-25800-3
  • Dong, J., and Hudson, M.E. 2022. WI12(Rhg1) interacts with DELLAs and mediates soybean cyst nematode resistance through hormone pathways. Plant Biotechnol. J. 20:283–296. doi:10.1111/pbi.13709
  • Dong, Y., Yang, X., Liu, J., Wang, B.H., Liu, B.-L., and Wang, Y.Z. 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 5:3352. doi:10.1038/ncomms4352
  • Dong, J., Zielinski, R.E., and Hudson, M.E. 2020. T-SNAREs bind the Rhg1 α-SNAP and mediate soybean cyst nematode resistance. Plant J. 104:318–331. doi:10.1111/tpj.14923
  • Duan, Z., Zhang, M., Zhang, Z., Liang, S., Fan, L., Yang, X., Yuan, Y., Pan, Y., Zhou, G., Liu, S., and Tian, Z. 2022. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol. J. 20:1807–1818. doi:10.1111/pbi.13865
  • Fang, C., Li, W., Li, G., Wang, Z., Zhou, Z., Ma, Y., Shen, Y., Li, C., Wu, Y., Zhu, B., Yang, W., and Tian, Z. 2013. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J. Genet. Genomic. 40:93–96. doi:10.1016/j.jgg.2013.01.002
  • Fang, C., Li, C., Li, W., Wang, Z., Zhou, Z., Shen, Y., Wu, M., Wu, Y., Li, G., Kong, L.-A., Liu, C., Jackson, S. A., and Tian, Z. 2014. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J. 77:700–712. doi:10.1111/tpj.12419
  • Feng, Y., Zhang, S., Li, J., Pei, R., Tian, L., Qi, J., Azam, M., Agyenim-Boateng, K. G., Shaibu, A. S., Liu, Y., Zhu, Z., Li, B., and Sun, J. 2023. Dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. New Phytol. 237:1794–1809. doi:10.1111/nph.18610
  • Fernie, A.R., and Yan, J. 2019. De Novo domestication: An alternative route toward new crops for the future. Mol. Plant. 12:615–631. doi:10.1016/j.molp.2019.03.016
  • Fliege, C. E., Ward, R. A., Vogel, P., Nguyen, H., Quach, T., Guo, M., Viana, J. P. G., Dos Santos, L. B., Specht, J. E., Clemente, T. E., Hudson, M. E., and Diers, B. W. 2022. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. Plant J. 110:114–128. doi:10.1111/tpj.15658
  • Funatsuki, H., Suzuki, M., Hirose, A., Inaba, H., Yamada, T., Hajika, M., Komatsu, K., Katayama, T., Sayama, T., Ishimoto, M., and Fujino, K. 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. U S A. 111:17797–17802. doi:10.1073/pnas.1417282111
  • Ge, L., Yu, J., Wang, H., Luth, D., Bai, G., Wang, K., and Chen, R. 2016. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc. Natl. Acad. Sci. U S A. 113:12414–12419. doi:10.1073/pnas.1611763113
  • Gillman, J.D., Tetlow, A., Lee, J.-D., Shannon, J.G., and Bilyeu, K. 2011. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol. 11:155. doi:10.1186/1471-2229-11-155
  • Goettel, W., Zhang, H., Li, Y., Qiao, Z., Jiang, H., Hou, D., Song, Q., Pantalone, V. R., Song, B.-H., Yu, D., and An, Y.-Q C. 2022. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nat. Commun. 13:3051. doi:10.1038/s41467-022-30314-7
  • Guan, R., Qu, Y., Guo, Y., Yu, L., Liu, Y., Jiang, J., Chen, J., Ren, Y., Liu, G., Tian, L., Jin, L., Liu, Z., Hong, H., Chang, R., Gilliham, M., and Qiu, L. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J. 80:937–950. doi:10.1111/tpj.12695
  • Guo, W., Zhang, F., Bao, A., You, Q., Li, Z., Chen, J., Cheng, Y., Zhao, W., Shen, X., Zhou, X., and Jiao, Y. 2019. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. Mol. Plant Pathol. 20:270–286. doi:10.1111/mpp.12753
  • Han, Y., Zhao, X., Liu, D., Li, Y., Lightfoot, D. A., Yang, Z., Zhao, L., Zhou, G., Wang, Z., Huang, L., Zhang, Z., Qiu, L., Zheng, H., and Li, W. 2016. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol. 209:871–884. doi:10.1111/nph.13626
  • Hayes, A.J., Jeong, S.C., Gore, M.A., Yu, Y.G., Buss, G.R., Tolin, S.A., and Maroof, M.A.S. 2004. Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics. 166:493–503. doi:10.1534/genetics.166.1.493
  • He, H., Yang, X., Xun, H., Lou, X., Li, S., Zhang, Z., Jiang, L., Dong, Y., Wang, S., Pang, J., and Liu, B. 2017. Over-expression of GmSN1 enhances virus resistance in Arabidopsis and soybean. Plant Cell Rep. 36:1441–1455. doi:10.1007/s00299-017-2167-3
  • Hu, D., Li, X., Yang, Z., Liu, S., Hao, D., Chao, M., Zhang, J., Yang, H., Su, X., Jiang, M., Lu, S., Zhang, D., Wang, L., Kan, G., Wang, H., Cheng, H., Wang, J., Huang, F., Tian, Z., and Yu, D. 2022. Downregulation of a gibberellin 3β‐hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol. 235:502–517. doi:10.1111/nph.18153
  • Huang, X., Huang, S., Han, B., and Li, J. 2022. The integrated genomics of crop domestication and breeding. Cell. 185:2828–2839. doi:10.1016/j.cell.2022.04.036
  • Hymowitz, T. 2008. The history of the soybean. In Soybeans: Chemistry, Production, Processing, and Utilization. Johnson, L.A., White, P.J., and Galloway, R., Eds. Urbana, IL: AOCS Press, pp. 1–31.
  • Ishibashi, K., Saruta, M., Shimizu, T., Shu, M., Anai, T., Komatsu, K., Yamada, N., Katayose, Y., Ishikawa, M., Ishimoto, M., and Kaga, A. 2019. Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nat. Commun. 10:4033. doi:10.1038/s41467-019-12052-5
  • Jia, J., Ji, R., Li, Z., Yu, Y., Nakano, M., Long, Y., Feng, L., Qin, C., Lu, D., Zhan, J., Xia, R., Meyers, B. C., Liu, B., and Zhai, J. 2020. Soybean DICER-LIKE2 regulates seed coat color via production of primary 22-nucleotide small interfering RNAs from long inverted repeats. Plant Cell. 32:3662–3673. doi:10.1105/tpc.20.00562
  • Jiang, B., Nan, H., Gao, Y., Tang, L., Yue, Y., Lu, S., Ma, L., Cao, D., Sun, S., Wang, J., Wu, C., Yuan, X., Hou, W., Kong, F., Han, T., and Liu, B. 2014. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One. 9:e106042. doi:10.1371/journal.pone.0106042
  • Jia, J., Wang, H., Cai, Z., Wei, R., Huang, J., Xia, Q., Xiao, X., Ma, Q., Nian, H., and Cheng, Y. 2022. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycinemax (L.) merr.]. J. Integr. Agr 21:3169–3184. doi:10.1016/j.jia.2022.08.082
  • Kohzuma, K., Sato, Y., Ito, H., Okuzaki, A., Watanabe, M., Kobayashi, H., Nakano, M., Yamatani, H., Masuda, Y., Nagashima, Y., Fukuoka, H., Yamada, T., Kanazawa, A., Kitamura, K., Tabei, Y., Ikeuchi, M., Sakamoto, W., Tanaka, A., and Kusaba, M. 2017. The non-mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol. 173:2138–2147. doi:10.1104/pp.16.01589
  • Kurasch, A. K., Hahn, V., Leiser, W. L., Vollmann, J., Schori, A., Bétrix, C.-A., Mayr, B., Winkler, J., Mechtler, K., Aper, J., Sudaric, A., Pejic, I., Sarcevic, H., Jeanson, P., Balko, C., Signor, M., Miceli, F., Strijk, P., Rietman, H., Muresanu, E., Djordjevic, V., Pospišil, A., Barion, G., Weigold, P., Streng, S., Krön, M., and Würschum, T. 2017. Identification of mega-environments in Europe and effect of allelic variation at maturity E. loci on adaptation of European soybean. Plant. Cell Environ. 40:765–778. doi:10.1111/pce.12896
  • Lakhssassi, N., Liu, S., Bekal, S., Zhou, Z., Colantonio, V., Lambert, K., Barakat, A., and Meksem, K. 2017. Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci. Rep. 7:45226. doi:10.1038/srep45226
  • Lakhssassi, N., Piya, S., Bekal, S., Liu, S., Zhou, Z., Bergounioux, C., Miao, L., Meksem, J., Lakhssassi, A., Jones, K., Kassem, M. A., Benhamed, M., Bendahmane, A., Lambert, K., Boualem, A., Hewezi, T., and Meksem, K. 2020. A pathogenesis-related protein GmPR08-bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to heterodera glycines. Plant Biotechnol. J. 18:1810–1829. doi:10.1111/pbi.13343
  • Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., Li, M.-W., He, W., Qin, N., Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S. S.-M., and Zhang, G. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:1053–1059. doi:10.1038/ng.715
  • Langewisch, T., Lenis, J., Jiang, G.-L., Wang, D., Pantalone, V., and Bilyeu, K. 2017. The development and use of a molecular model for soybean maturity groups. BMC Plant Biol. 17:91. doi:10.1186/s12870-017-1040-4
  • Lemmon, Z.H., Reem, N.T., Dalrymple, J., Soyk, S., Swartwood, K.E., Rodriguez-Leal, D., Van Eck, J., and Lippman, Z.B. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants. 4:766–770. doi:10.1038/s41477-018-0259-x
  • Li, Y., Guan, R., Liu, Z., Ma, Y., Wang, L., Li, L., Lin, F., Luan, W., Chen, P., Yan, Z., Guan, Y., Zhu, L., Ning, X., Smulders, M. J. M., Li, W., Piao, R., Cui, Y., Yu, Z., Guan, M., Chang, R., Hou, A., Shi, A., Zhang, B., Zhu, S., and Qiu, L. 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) Landraces in China. Theor. Appl. Genet. 117:857–871. doi:10.1007/s00122-008-0825-0
  • Li, C., Li, Y.-H., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., Liu, J., Zhou, X., Jackson, S. A., Liu, B., and Qiu, L.-J. 2020. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol. Plant. 13:745–759. doi:10.1016/j.molp.2020.01.014
  • Lin, X., Dong, L., Tang, Y., Li, H., Cheng, Q., Li, H., Zhang, T., Ma, L., Xiang, H., Chen, L., et al. 2022. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc. Natl. Acad. Sci. U S A. 119:e2208708119.
  • Liu, W., Jiang, B., Ma, L., Zhang, S., Zhai, H., Xu, X., Hou, W., Xia, Z., Wu, C., Sun, S., Wu, T., Chen, L., and Han, T. 2018. Functional diversification of Flowering locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol. 217:1335–1345. doi:10.1111/nph.14884
  • Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harada, K., and Abe, J. 2008. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007. doi:10.1534/genetics.108.092742
  • Liu, S., Kandoth, P. K., Lakhssassi, N., Kang, J., Colantonio, V., Heinz, R., Yeckel, G., Zhou, Z., Bekal, S., Dapprich, J., Rotter, B., Cianzio, S., Mitchum, M. G., and Meksem, K. 2017b. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat. Commun. 8:14822. doi:10.1038/ncomms14822
  • Liu, S., Kandoth, P. K., Warren, S. D., Yeckel, G., Heinz, R., Alden, J., Yang, C., Jamai, A., El-Mellouki, T., Juvale, P. S., Hill, J., Baum, T. J., Cianzio, S., Whitham, S. A., Korkin, D., Mitchum, M. G., and Meksem, K. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260. doi:10.1038/nature11651
  • Liu, L., Song, W., Wang, L., Sun, X., Qi, Y., Wu, T., Sun, S., Jiang, B., Wu, C., Hou, W., Ni, Z., and Han, T. 2020b. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. PLoS One. 15:e0235397. doi:10.1371/journal.pone.0235397
  • Liu, B., Watanabe, S., Uchiyama, T., Kong, F., Kanazawa, A., Xia, Z., Nagamatsu, A., Arai, M., Yamada, T., Kitamura, K., Masuta, C., Harada, K., and Abe, J. 2010. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis terminal flower. Plant Physiol. 153:198–210. doi:10.1104/pp.109.150607
  • Liu, J.Y., Zhang, Y.W., Han, X., Zuo, J.F., Zhang, Z., Shang, H., Song, Q., and Zhang, Y.M. 2020a. An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J. Exp. Bot. 71:6988–7002. doi:10.1093/jxb/eraa426
  • Liu, Q., Zhang, X., and Wang, S. 2017a. The origin and spread of cultivated soybean from the perspective of "the belt and road. Chin. Wild Plant Res. 36:1–6.
  • Li, J., Wang, X., Song, W., Huang, X., Zhou, J., Zeng, H., Sun, S., Jia, H., Li, W., Zhou, X., Li, S., Chen, P., Wu, C., Guo, Y., Han, T., and Qiu, L. 2017. Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS One. 12:e0172106. doi:10.1371/journal.pone.0172106
  • Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., and Xu, C. 2018. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 4:766–770. doi:10.1038/nbt.4273
  • Li, K., Yang, Q.H., Zhi, H.J., and Gai, J.Y. 2010. Identification and distribution of soybean mosaic virus strains in Southern China. Plant Dis. 94:351–357. doi:10.1094/PDIS-94-3-0351
  • Li, J., Zhang, Y., Ma, R., Huang, W., Hou, J., Fang, C., Wang, L., Yuan, Z., Sun, Q., Dong, X., Hou, Y., Wang, Y., Kong, F., and Sun, L. 2022. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol. J. 20:1110–1121. doi:10.1111/pbi.13791
  • Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., Zhang, L., Wang, Z., Yang, Y., Yu, D., Liu, X., Yang, Q., Lin, X., Tang, Y., Zhao, X., Yang, X., Tian, C., Xie, Q., Li, X., Yuan, X., Tian, Z., Liu, B., Weller, J. L., and Kong, F. 2020. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 52:428–436. doi:10.1038/s41588-020-0604-7
  • Lu, Y., Tian, Y., Shen, R., Yao, Q., Wang, M., Chen, M., Dong, J., Zhang, T., Li, F., Lei, M., and Zhu, J.-K. 2020. Targeted, efficient sequence insertion and replacement in rice. Nat. Biotechnol. 38:1402–1407. doi:10.1038/s41587-020-0581-5
  • Maher, M.F., Nasti, R.A., Vollbrecht, M., Starker, C.G., Clark, M.D., and Voytas, D.F. 2020. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38:84–89. doi:10.1038/s41587-019-0337-2
  • Matson, A.L., and Williams, L.F. 1965. Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci 5:477–477. doi:10.2135/cropsci1965.0011183X000500050032xa
  • Miao, L., Yang, S., Zhang, K., He, J., Wu, C., Ren, Y., Gai, J., and Li, Y. 2020. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol. 225:1651–1666. doi:10.1111/nph.16250
  • Nguyen, C.X., Paddock, K.J., Zhang, Z., and Stacey, M.G. 2021. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol. 229:920–934. doi:10.1111/nph.16928
  • Ouyang, W., Chen, L., Ma, J., Liu, X., Chen, H., Yang, H., Guo, W., Shan, Z., Yang, Z., Chen, S., Zhan, Y., Zhang, H., Cao, D., and Zhou, X. 2022. Identification of quantitative trait locus and candidate genes for drought tolerance in a soybean recombinant inbred line population. Int J Mol Sci. 23:10828. doi:10.3390/ijms231810828
  • Pedley, K.F., Pandey, A.K., Ruck, A., Lincoln, L.M., Whitham, S.A., and Graham, M.A. 2019. Rpp1 encodes a ULP1-NBS-LRR protein that controls immunity to Phakopsora pachyrhizi in soybean. Mol. Plant. Microbe Interact. 32:120–133. doi:10.1094/MPMI-07-18-0198-FI
  • Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. 2010. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 10:195. doi:10.1186/1471-2229-10-195
  • Ping, J., Liu, Y., Sun, L., Zhao, M., Li, Y., She, M., Sui, Y., Lin, F., Liu, X., Tang, Z., Nguyen, H., Tian, Z., Qiu, L., Nelson, R. L., Clemente, T. E., Specht, J. E., and Ma, J. 2014. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell. 26:2831–2842. doi:10.1105/tpc.114.126938
  • Qi, X., Li, M.-W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., Kay-Yuen Yim, A., Tao, Y., Wong, F.-L., Isobe, S., Wong, C.-F., Wong, K.-S., Xu, C., Li, C., Wang, Y., Guan, R., Sun, F., Fan, G., Xiao, Z., Zhou, F., Phang, T.-H., Liu, X., Tong, S.-W., Chan, T.-F., Yiu, S.-M., Tabata, S., Wang, J., Xu, X., and Lam, H.-M. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun. 5:4340. doi:10.1038/ncomms5340
  • Rao-Arelli, A.P., Anand, S.C., and Wrather, A.J. 1992. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene. Crop Sci. 32:862–864. doi:10.2135/cropsci1992.0011183X003200040005x
  • Sathyapalan, T., Aye, M., Rigby, A.S., Thatcher, N.J., Dargham, S.R., Kilpatrick, E.S., and Atkin, S.L. 2018. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis. 28:691–697. doi:10.1016/j.numecd.2018.03.007
  • Schoving, C., Stöckle, C.O., Colombet, C., Champolivier, L., Debaeke, P., and Maury, P. 2019. Combining simple phenotyping and photothermal algorithm for the prediction of soybean phenology: Application to a range of common cultivars grown in Europe. Front. Plant Sci. 10:1755. doi:10.3389/fpls.2019.01755
  • Song, Y.H., Ito, S., and Imaizumi, T. 2013. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18:575–583. doi:10.1016/j.tplants.2013.05.003
  • Suh, S.J., Bowman, B.C., Jeong, N., Yang, K., Kastl, C., Tolin, S.A., Maroof, M.A.S., and Jeong, S.C. 2011. The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome 4:55–64.
  • Sun, M., Li, Y., Zheng, J., Wu, D., Li, C., Li, Z., Zang, Z., Zhang, Y., Fang, Q., Li, W., Han, Y., Zhao, X., and Li, Y. 2022. A nuclear factor y-b transcription factor, GmNFYB17, regulates resistance to drought stress in soybean. Int J Mol Sci 23:7242. doi:10.3390/ijms23137242
  • Sun, L., Miao, Z., Cai, C., Zhang, D., Zhao, M., Wu, Y., Zhang, X., Swarm, S. A., Zhou, L., Zhang, Z. J., Nelson, R. L., and Ma, J. 2015. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 47:939–943. doi:10.1038/ng.3339
  • Sun, J., Yang, L., Zhao, F., and Wu, W. 2020. Domestic dynamics of crop production in response to international food trade: Evidence from soybean imports in China. J. Land Use Sci 15:91–98. doi:10.1080/1747423X.2020.1742811
  • Tang, Y., Lu, S., Fang, C., Liu, H., Dong, L., Li, H., Su, T., Li, S., Wang, L., Cheng, Q., Liu, B., Lin, X., and Kong, F. 2023. Diverse flowering responses subjecting to ambient high temperature in soybean under short-day conditions. Plant Biotechnol. J. 21:782–791. doi:10.1111/pbi.13996
  • Tian, Z., Wang, X., Lee, R., Li, Y., Specht, J.E., Nelson, R.L., McClean, P.E., Qiu, L., and Ma, J. 2010. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. U S A. 107:8563–8568. doi:10.1073/pnas.1000088107
  • Toda, K., Yang, D., Yamanaka, N., Watanabe, S., Harada, K., and Takahashi, R. 2002. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50:187–196. doi:10.1023/a:1016087221334
  • Todd, J.J., and Vodkin, L.O. 1996. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell. 8:687–699. doi:10.1105/tpc.8.4.687
  • Wallace, J.G., Rodgers-Melnick, E., and Buckler, E.S. 2018. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52:421–444. doi:10.1146/annurev-genet-120116-024846
  • Wang, L. 2007. Soybean cultivar improvement and innovation. In: Contemporary Soybean Research in China. Wang, L., and Guo, Q., Eds. Jindun Press: Beijing, pp 281–282.
  • Wang, M., Li, W., Fang, C., Xu, F., Liu, Y., Wang, Z., Yang, R., Zhang, M., Liu, S., Lu, S., Lin, T., Tang, J., Wang, Y., Wang, H., Lin, H., Zhu, B., Chen, M., Kong, F., Liu, B., Zeng, D., Jackson, S. A., Chu, C., and Tian, Z. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50:1435–1441. doi:10.1038/s41588-018-0229-2
  • Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y.-C., Liu, Z., Frommer, W. B., Ma, J. F., Chen, L.-Q., Guan, Y., Shou, H., and Tian, Z. 2020b. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 7:1776–1786. doi:10.1093/nsr/nwaa110
  • Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., Li, J., Jia, H., Yuan, S., Chen, L., Jiang, B., Wu, C., Hou, W., and Han, T. 2020a. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol. J. 18:1869–1881. doi:10.1111/pbi.13346
  • Wang, D., Tian, Z., Li, K., Li, H., Huang, Z., Hu, G., Zhang, L., and Zhi, H. 2013. Identification and variation analysis of soybean mosaic virus strains in Shandong, Henan and Anhui provinces of China. Soybean Sci. 32:806–809.
  • Wang, Z., Wang, Y., Shang, P., Yang, C., Yang, M., Huang, J., Ren, B., Zuo, Z., Zhang, Q., Li, W., and Song, B. 2022. Overexpression of soybean GmWRI1a stably increases the seed oil content in soybean. Int J Mol Sci. 23:5084. doi:10.3390/ijms23095084
  • Wang, C., Wu, T., Sun, S., Xu, R., Ren, J., Wu, C., Jiang, B., Hou, W., and Han, T. 2016. Seventy-five years of improvement of yield and agronomic traits of soybean cultivars released in the Yellow-Huai-Hai river valley. Crop Sci. 56:2354–2364. doi:10.2135/cropsci2015.10.0618
  • Wang, Y., Wu, C.X., Zhang, X.M., Wang, Y.P., and Han, T.F. 2008. Effects of soybean major maturity genes under different photoperiods. A A S. 34:1160–1168. doi:10.3724/SP.J.1006.2008.01160
  • Wang, W., Zhou, B., He, J., Zhao, J., Liu, C., Chen, X., Xing, G., Chen, S., Xing, H., and Gai, J. 2020c. Comprehensive identification of drought tolerance QTL-allele and candidate gene systems in Chinese cultivated soybean population. Int. J. Mol. Sci. 21:4830. doi:10.3390/ijms21144830
  • Watanabe, S., Hideshima, R., Xia, Z., Tsubokura, Y., Sato, S., Nakamoto, Y., Yamanaka, N., Takahashi, R., Ishimoto, M., Anai, T., Tabata, S., and Harada, K. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 182:1251–1262. doi:10.1534/genetics.108.098772
  • Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Tabata, S., Kitamura, K., and Harada, K. 2011. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 188:395–407. doi:10.1534/genetics.110.125062
  • Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., Asyraf Md Hatta, M., Hinchliffe, A., Steed, A., Reynolds, D., Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E., Riaz, A., Martin, W., Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., and Hickey, L. T. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants. 4:23–29. doi:10.1038/s41477-017-0083-8
  • Widyasari, K., Alazem, M., and Kim, K.H. 2020. Soybean resistance to soybean mosaic virus. Plants 9:219. doi:10.3390/plants9020219
  • Wilson, R.F. 2008. Soybean: Market driven research needs. In: Genetics and Genomics of Soybean. Stacey, G., Ed. New York, NY: Springer New York, pp 3–15.
  • Wolfgang, G., and An, Y.Q.C. 2017. Genetic separation of southern and northern soybean breeding programs in North America and their associated allelic variation at four maturity loci. Mol. Breed. 37:8. doi:10.1007/s11032-016-0611-7
  • Wu, D., Li, D., Zhao, X., Zhan, Y., Teng, W., Qiu, L., Zheng, H., Li, W., and Han, Y. 2020a. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. Plant J. 104:950–963. doi:10.1111/tpj.14972
  • Wu, N., Lu, Q., Wang, P., Zhang, Q., Zhang, J., Qu, J., and Wang, N. 2020b. Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. Int. J. Mol. Sci. 21:1104. doi:10.3390/ijms21031104
  • Wu, C., Ma, Q., Yam, K.M., Cheung, M.Y., Xu, Y., Han, T., Lam, H.M., and Chong, K. 2006. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) Flowering reversion system. Planta 223:725–735. doi:10.1007/s00425-005-0130-y
  • Wu, T., Sun, S., Wang, C., Lu, W., Sun, B., Song, X., Han, X., Guo, T., Man, W., Cheng, Y., Niu, J., Fu, L., Song, W., Jiang, B., Hou, W., Wu, C., and Han, T. 2015. Characterizing changes from a century of genetic improvement of soybean cultivars in Northeast China. Crop Sci. 55:2056–2067. doi:10.2135/cropsci2015.01.0023
  • Xavier, A., and Rainey, K.M. 2020. Quantitative genomic dissection of soybean yield components. G3 (Bethesda) 10:665–675. doi:10.1534/g3.119.400896
  • Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., Anai, T., Sato, S., Yamazaki, T., Lü, S., et al. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. U S A. 109:E2155–64.
  • Yang, K., Jeong, N., Moon, J.K., Lee, Y.H., Lee, S.H., Kim, H.M., Hwang, C.H., Back, K., Palmer, R.G., and Jeong, S.C. 2010. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J. Hered. 101:757–768. doi:10.1093/jhered/esq078
  • Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., Gao, Q., Liang, Y., Liu, X., Fan, Z., Liang, Y., Cheng, Z., Chen, M., Tian, Z., Wang, Y., Chu, C., Zuo, J., Wan, J., Qian, Q., Han, B., Zuccolo, A., Wing, R. A., Gao, C., Liang, C., and Li, J. 2021. A route to de novo domestication of wild allotetraploid rice. Cell. 184:1156–1170.e14. doi:10.1016/j.cell.2021.01.013
  • Yue, Y., Liu, N., Jiang, B., Li, M., Wang, H., Jiang, Z., Pan, H., Xia, Q., Ma, Q., Han, T., and Nian, H. 2017. A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol. Plant. 10:656–658. doi:10.1016/j.molp.2016.12.004
  • Yue, Y., Sun, S., Li, J., Yu, H., Wu, H., Sun, B., Li, T., Han, T., and Jiang, B. 2021. GmFULa improves soybean yield by enhancing carbon assimilation without altering flowering time or maturity. Plant Cell Rep. 40:1875–1888. doi:10.1007/s00299-021-02752-y
  • Zabala, G., and Vodkin, L. 2003. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’ hydroxylase. Genetics 163:295–309. doi:10.1093/genetics/163.1.295
  • Zabala, G., and Vodkin, L.O. 2007. A rearrangement resulting in small tandem repeats in the F3′5′h gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci. 47:S113–S124.
  • Zhang, P., Du, H., Wang, J., Pu, Y., Yang, C., Yan, R., Yang, H., Cheng, H., and Yu, D. 2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J. 18:1384–1395. doi:10.1111/pbi.13302
  • Zhang, J., and Singh, A.K. 2020. Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. G3 (Bethesda) 10:545–554. doi:10.1534/g3.119.400876
  • Zhang, D., Sun, L., Li, S., Wang, W., Ding, Y., Swarm, S. A., Li, L., Wang, X., Tang, X., Zhang, Z., Tian, Z., Brown, P. J., Cai, C., Nelson, R. L., and Ma, J. 2018. Elevation of soybean seed oil content through selection for seed coat shininess. Nat. Plants. 4:30–35. doi:10.1038/s41477-017-0084-7
  • Zhang, D., Wang, X., Li, S., Wang, C., Gosney, M.J., Mickelbart, M.V., and Ma, J. 2019. A post-domestication mutation, Dt2, triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Mol. Plant. 12:1366–1382. doi:10.1016/j.molp.2019.05.010
  • Zhao, B., Dai, A., Wei, H., Yang, S., Wang, B., Jiang, N., and Feng, X. 2016. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol. Biol. 90:33–47. doi:10.1007/s11103-015-0392-0
  • Zhou, L., He, H., Liu, R., Han, Q., Shou, H., and Liu, B. 2014. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biol. 14:154. doi:10.1186/1471-2229-14-154
  • Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., Fang, C., Shen, Y., Liu, T., Li, C., Li, Q., Wu, M., Wang, M., Wu, Y., Dong, Y., Wan, W., Wang, X., Ding, Z., Gao, Y., Xiang, H., Zhu, B., Lee, S.-H., Wang, W., and Tian, Z. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33:408–414. doi:10.1038/nbt.3096
  • Zhuang, Y., Wang, X., Li, X., Hu, J., Fan, L., Landis, J. B., Cannon, S. B., Grimwood, J., Schmutz, J., Jackson, S. A., Doyle, J. J., Zhang, X. S., Zhang, D., and Ma, J. 2022. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nat. Plants. 8:233–244. doi:10.1038/s41477-022-01102-4
  • Zsögön, A., Čermák, T., Naves, E.R., Notini, M.M., Edel, K.H., Weinl, S., Freschi, L., Voytas, D.F., Kudla, J., and Peres, L.E.P. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36:1211–1216. doi:10.1038/nbt.4272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.