498
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Dealing with extremes: insights into development and operation of salt bladders and glands

, , , & ORCID Icon

References

  • Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J., and Griffiths, H. 1998. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138:171–190. doi:10.1046/j.1469-8137.1998.00111.x
  • Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., and Cushman, J. C. 2007. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58:1957–1967. doi:10.1093/jxb/erm057
  • Balkunde, R., Pesch, M., and Hülskamp, M. 2010. Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr. Top. Dev. Biol. 91:299–321. doi:10.1016/S0070-2153(10)91010-7
  • Bansal, J., Gupta, K., Rajkumar, M. S., Garg, R., and Jain, M. 2021. Draft genome and transcriptome analyses of halophyte rice Oryza coarctata provide resources for salinity and submergence stress response factors. Physiol. Plant. 173:1309–1322. doi:10.1111/ppl.13284
  • Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A., Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C., Ache, P., Al-Rasheid, K. A. S., Mayer, K. F. X., Shabala, S., Carpaneto, A., Haberer, G., Zhu, J.-K., and Hedrich, R. 2018. Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Curr. Biol. 28:3075–3085.e7. doi:10.1016/j.cub.2018.08.004
  • Bosabalidis, A. M. 2012. Programmed cell death in salt glands of Tamarix aphylla L.: an electron microscope analysis. Cent. Eur. J. Biol. 7:927–930. doi:10.2478/s11535-012-0067-7
  • Cardale, S., and Field, C. D. 1971. The structure of the salt gland of Aegiceras corniculatum. Planta 99:183–191. doi:10.1007/BF00386836
  • Chen, J., Xiao, Q., Wu, F., Dong, X., He, J., Pei, Z., Zheng, H., and Näsholm, T. 2010. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol. 30:1570–1585. doi:10.1093/treephys/tpq086
  • Choi, Y.-E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., and Sano, H. 2001. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50. doi:10.1007/s004250000487
  • Dassanayake, M., and Larkin, J. C. 2017. Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front. Plant Sci. 8:406. doi:10.3389/fpls.2017.00406
  • Deng, Y., Feng, Z., Yuan, F., Guo, J., Suo, S., and Wang, B. 2015. Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands. Plant Physiol. Biochem. 97:20–27. doi:10.1016/j.plaphy.2015.09.007
  • Ding, F., Yang, J.-C., Yuan, F., and Wang, B.-S. 2010. Progress in mechanism of salt excretion in recretohalopytes. Front. Biol. 5:164–170. doi:10.1007/s11515-010-0032-7
  • Edgar, B. A., Zielke, N., and Gutierrez, C. 2014. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat. Rev. Mol. Cell Biol. 15:197–210. doi:10.1038/nrm3756
  • Feng, X., Li, G., Xu, S., Wu, W., Chen, Q., Shao, S., Liu, M., Wang, N., Zhong, C., He, Z., and Shi, S. 2021. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. New Phytol. 231:2346–2358. doi:10.1111/nph.17551
  • Feng, Z., Sun, Q., Deng, Y., Sun, S., Zhang, J., and Wang, B. 2014. Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor. Acta Physiol. Plant. 36:2729–2741. doi:10.1007/s11738-014-1644-3
  • Field, C. D., Hinwood, B. G., and Stevenson, I. 1984. Structural features of the salt gland of Aegiceras. In Physiology and Management of Mangroves; Teas H. J., Ed. Dordrecht: Springer. p. 37–42.
  • Flowers, T. J., and Colmer, T. D. 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115:327–331. doi:10.1093/aob/mcu267
  • Flowers, T. J., Flowers, S. A., Hajibagheri, M. A., and Yeo, A. R. 1990. Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. New Phytol. 114:675–684. doi:10.1111/j.1469-8137.1990.tb00439.x
  • Friis, G., Vizueta, J., Smith, E. G., Nelson, D. R., Khraiwesh, B., Qudeimat, E., Salehi-Ashtiani, K., Ortega, A., Marshell, A., Duarte, C. M., et al. 2020. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3-Genes Genomes Genet. 11:jkaa025.
  • Guo, Z., Wei, M.-Y., Zhong, Y.-H., Wu, X., Chi, B.-J., Li, J., Li, H., Zhang, L.-D., Wang, X.-X., Zhu, X.-Y., and Zheng, H.-L. 2023. Leaf sodium homeostasis controlled by salt gland is associated with salt tolerance in mangrove plant Avicennia marina. Tree Physiol. 43:817–831. doi:10.1093/treephys/tpad002
  • Han, G., Qiao, Z., Li, Y., Yang, Z., Zhang, Z., Zhang, Y., Guo, J., Liu, L., Wang, C., and Wang, B. 2022. LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants. Front. Plant Sci. 13:1039984. doi:10.3389/fpls.2022.1039984
  • Hashemi-Petroudi, S. H., Arab, M., Dolatabadi, B., Kuo, Y.-T., Baez, M. A., Himmelbach, A., Nematzadeh, G., Maibody, S. A. M. M., Schmutzer, T., Mälzer, M., Altmann, T., and Kuhlmann, M. 2022. Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass. Front. Plant Sci. 13:906462. doi:10.3389/fpls.2022.906462
  • Imamura, T., Yasui, Y., Koga, H., Takagi, H., Abe, A., Nishizawa, K., Mizuno, N., Ohki, S., Mizukoshi, H., and Mori, M. 2020. A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun. Biol. 3:513. doi:10.1038/s42003-020-01249-w
  • Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J. A., Ohyanagi, H., Mineta, K., Michell, C. T., Saber, N., Kharbatia, N. M., Rupper, R. R., Sharp, A. R., Dally, N., Boughton, B. A., Woo, Y. H., Gao, G., Schijlen, E. G. W. M., Guo, X., Momin, A. A., Negrão, S., Al-Babili, S., Gehring, C., Roessner, U., Jung, C., Murphy, K., Arold, S. T., Gojobori, T., Linden, C. G. v d., van Loo, E. N., Jellen, E. N., Maughan, P. J., and Tester, M. 2017. The genome of Chenopodium quinoa. Nature 542:307–312. doi:10.1038/nature21370
  • Jiao, X., Zhao, B., Wang, B., and Yuan, F. 2022. An uncharacterized gene Lb1G04794 from Limonium bicolor promotes salt tolerance and trichome development in Arabidopsis. Front. Plant Sci. 13:1079534. doi:10.3389/fpls.2022.1079534
  • Johnson, H. B. 1975. Plant pubescence: An ecological perspective. Bot. Rev. 41:233–258. doi:10.1007/BF02860838
  • Kadukova, J., Manousaki, E., and Kalogerakis, N. 2008. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix Smyrnensis Bunge). Int. J. Phytorem. 10:31–46. doi:10.1080/15226510701827051
  • Kersey, P. J. 2019. Plant genome sequences: past, present, future. Curr. Opin. Plant Biol. 48:1–8. doi:10.1016/j.pbi.2018.11.001
  • Kiani-Pouya, A., Rasouli, F., Bazihizina, N., Zhang, H., Hedrich, R., and Shabala, S. 2019. A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environ. Exp. Bot. 168:103885. doi:10.1016/j.envexpbot.2019.103885
  • Kiani‐Pouya, A., Roessner, U., Jayasinghe, N. S., Lutz, A., Rupasinghe, T., Bazihizina, N., Bohm, J., Alharbi, S., Hedrich, R., and Shabala, S. 2017. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant. Cell Environ. 40:1900–1915. doi:10.1111/pce.12995
  • Kirik, V., Simon, M., Huelskamp, M., and Schiefelbein, J. 2004a. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 268:506–513. doi:10.1016/j.ydbio.2003.12.037
  • Kirik, V., Simon, M., Wester, K., Schiefelbein, J., and Hulskamp, M. 2004b. ENHANCER of TRYand CPC 2(ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol. Biol. 55:389–398. doi:10.1007/s11103-004-0893-8
  • Konarska, A., and Łotocka, B. 2020. Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure. Planta 252:102. doi:10.1007/s00425-020-03513-z
  • Koteyeva, N. K., Voznesenskaya, E. V., Berim, A., Gang, D. R., and Edwards, G. E. 2022. Structural diversity in salt excreting glands and salinity tolerance in Oryza coarctata, Sporobolus anglicus and Urochondra setulosa. Planta 257:9. doi:10.1007/s00425-022-04035-6
  • Lai, Y., Lu, J., Yu, H., Yang, G., Cao, N., Ma, Y., Bi, Y.-D., Tao, J., Gao, W., Niu, L., et al. 2022. Structural evolution is the key to paternal identification in salt-resistant soybean breeding. PREPRINT (Version 1) Available at Research Square. doi:10.21203/rs.3.rs-1533022/v1
  • Leng, B. Y., Yuan, F., Dong, X. X., and Wang, B. S. 2018. Salt gland distribution in limonium bicolor at the individual level. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 3rd International Conference on Advances in Energy Resources and Environment Engineering, Harbin, China, Dec 8–10; Vol. 113, p 012202.
  • Leng, B., Dong, X., Lu, C., Li, K., Xu, Y., Yuan, F., and Wang, B. 2019. The lb23 mutant of recretohalophyte Limonium bicolor (Bag.) Kuntze with 20-, 24-, 28- and 32-cell salt glands shows elevated salt secretion. Flora 259:151441. doi:10.1016/j.flora.2019.151441
  • Li, P., Fu, J., Xu, Y., Shen, Y., Zhang, Y., Ye, Z., Tong, W., Zeng, X., Yang, J., Tang, D., Li, P., Zuo, H., Wu, Q., Xia, E., Wang, S., and Zhao, J. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytol. 234:902–917. doi:10.1111/nph.18026
  • Li, Y-H., Zhou, G., Ma, J., Jiang, W., Jin, L-G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S.-S., Zuo, Q., Shi, X.-H., Li, Y.-F., Zhang, W.-K., Hu, Y., Kong, G., Hong, H.-L., Tan, B., Song, J., Liu, Z.-X., Wang, Y., Ruan, H., Yeung, C. K. L., Liu, J., Wang, H., Zhang, L-J., Guan, R.-X., Wang, K.-J., Li, W.-B., Chen, S.-Y., Chang, R.-Z., Jiang, Z., Jackson, S. A., Li, R., and Qiu, L.-J. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:1045–1052. doi:10.1038/nbt.2979
  • Liu, P., Yan, X., Yang, X., Yang, Y., Zhang, H., Cui, H., and Wang, Z. 2019. Different roles of tobacco glandular and non-glandular trichomes in response to cadmium stress. J. Agric. Sci. Technol. 21:55–60.
  • Ma, D., Guo, Z., Ding, Q., Zhao, Z., Shen, Z., Wei, M., Gao, C., Zhang, L., Li, H., Zhang, S., Li, J., Zhu, X., and Zheng, H.-L. 2021. Chromosome‐level assembly of the mangrove plant Aegiceras corniculatum genome generated through Illumina, PacBio and Hi‐C sequencing technologies. Mol. Ecol. Resour. 21:1593–1607. doi:10.1111/1755-0998.13347
  • Marcum, K. B. 1999. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci. 39:1153–1160. doi:10.2135/cropsci1999.0011183X003900040034x
  • McWhorter, C. G., Paul, R. N., and Ouzts, J. C. 1995. Bicellular trichomes of johnsongrass (Sorghum halepense) leaves: morphology, histochemistry, and function. Weed Sci. 43:201–208. doi:10.1017/S0043174500081078
  • Mochida, K., Sakurai, T., Seki, H., Yoshida, T., Takahagi, K., Sawai, S., Uchiyama, H., Muranaka, T., and Saito, K. 2017. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 89:181–194. doi:10.1111/tpj.13385
  • Moog, M. W., Trinh, M. D. L., Nørrevang, A. F., Bendtsen, A. K., Wang, C., Østerberg, J. T., Shabala, S., Hedrich, R., Wendt, T., and Palmgren, M. 2022. The epidermal bladder cell‐free mutant of the salt‐tolerant quinoa challenges our understanding of halophyte crop salinity tolerance. New Phytol. 236:1409–1421. doi:10.1111/nph.18420
  • Morohashi, K., Zhao, M., Yang, M., Read, B., Lloyd, A., Lamb, R., and Grotewold, E. 2007. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 145:736–746. doi:10.1104/pp.107.104521
  • Naidoo, Y., and Naidoo, G. 2008. Localization of potential ion transport pathways in the salt glands of the halophyte Sporobolus virginicus. In Ecophysiology of High Salinity Tolerant Plants; Khan, M. A., and Weber, D. J., Eds. Springer: Dordrecht, pp 173–185.
  • Natarajan, P., Murugesan, A. K., Govindan, G., Gopalakrishnan, A., Kumar, R., Duraisamy, P., Balaji, R., Shyamli, P. S., Parida, A. K., Parani, M. and Tanuja,. 2021. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun. Biol. 4:851. doi:10.1038/s42003-021-02384-8
  • Naz, N., Hameed, M., Wahid, A., Arshad, M., and Ahmad, M. S. A. 2009. Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol. Plant. 135:185–195. doi:10.1111/j.1399-3054.2008.01187.x
  • Oh, D., Barkla, B. J., Vera‐Estrella, R., Pantoja, O., Lee, S., Bohnert, H. J., and Dassanayake, M. 2015. Cell type‐specific responses to salinity – the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytol. 207:627–644. doi:10.1111/nph.13414
  • Oi, T., Hirunagi, K., Taniguchi, M., and Miyake, H. 2013. Salt excretion from the salt glands in Rhodes grass (Chloris gayana Kunth) as evidenced by low-vacuum scanning electron microscopy. Flora 208:52–57. doi:10.1016/j.flora.2012.12.006
  • Oi, T., Miyake, H., and Taniguchi, M. 2014. Salt excretion through the cuticle without disintegration of fine structures in the salt glands of Rhodes grass (Chloris gayana Kunth). Flora 209:185–190. doi:10.1016/j.flora.2014.02.004
  • Oi, T., Taniguchi, M., and Miyake, H. 2012. Morphology and ultrastructure of the salt glands on the leaf surface of Rhodes grass (Chloris gayana Kunth). Int. J. Plant Sci. 173:454–463. doi:10.1086/665588
  • Peng, Z., He, S., Sun, J., Pan, Z., Gong, W., Lu, Y., and Du, X. 2016. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci. Rep. 6:34548. doi:10.1038/srep34548
  • Pesch, M., Hülskamp, M. 2009. One, two, three…models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 12:587–592. doi:10.1016/j.pbi.2009.07.015
  • Pollak, G., and Waisel, Y. 1970. Salt secretion in Aeluropus litoralis (Willd.) Parl. Ann. Bot. 34:879–888. doi:10.1093/oxfordjournals.aob.a084419
  • Rajakani, R., Sellamuthu, G., V, S., S, K., Shabala, L., Meinke, H., Chen, Z., Zhou, M., Parida, A., Shabala, S., and Venkataraman, G. 2019. Microhair on the adaxial leaf surface of salt secreting halophytic Oryza coarctata Roxb. show distinct morphotypes: Isolation for molecular and functional analysis. Plant Sci. 285:248–257. doi:10.1016/j.plantsci.2019.05.004
  • Ramadan, T., and Flowers, T. J. 2004. Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta 219:639–648. doi:10.1007/s00425-004-1269-7
  • Rao, S. S. 2011. Elucidation of mechanisms of salinity tolerance in Zoysia matrella cultivars: A study of structure and function of salt glands. PhD thesis, Texas A&M University, College Station.
  • Rawat, N., Wungrampha, S., Singla-Pareek, S. L., Yu, M., Shabala, S., and Pareek, A. 2022. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. Mol. Plant. 15:45–64. doi:10.1016/j.molp.2021.12.003
  • Roeurn, S., Hoshino, N., Soejima, K., Inoue, Y., Cushman, J. C., and Agarie, S. 2016. Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L. Plant Prod. Sci. 19:552–561. doi:10.1080/1343943X.2016.1221320
  • Roeurn, S., Hoshino, N., Soejima, K., Inoue, Y., Cushman, J. C., and Agarie, S. 2017. MYB and HD-ZIP IV homologs related to trichome formation are involved in epidermal bladder cell development in the halophyte Mesembryanthemum crystallinum L. Plant Prod. Sci. 20:72–82. doi:10.1080/1343943X.2017.1279528
  • Serna, L., and Martin, C. 2006. Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci. 11:274–280. doi:10.1016/j.tplants.2006.04.008
  • Shabala, S. 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 112:1209–1221. doi:10.1093/aob/mct205
  • Shabala, S., and Mackay, A. 2011. Ion transport in halophytes. Adv. Bot. Res. 57:151–199.
  • Shabala, S., Bose, J., and Hedrich, R. 2014. Salt bladders: do they matter? Trends Plant Sci. 19:687–691. doi:10.1016/j.tplants.2014.09.001
  • Shen, S., Li, N., Wang, Y., Zhou, R., Sun, P., Lin, H., Chen, W., Yu, T., Liu, Z., Wang, Z., Tan, X., Zhu, C., Feng, S., Zhang, Y., and Song, X. 2022. High‐quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. Plant Biotechnol. J. 20:2107–2122. doi:10.1111/pbi.13892
  • Shimony, C., Fahn, A., and Reinhold, L. 1973. Ultrastructure and ion gradients in the salt glands of Avicennia marina (Forssk.) Vierh. New Phytol. 72:27–36. doi:10.1111/j.1469-8137.1973.tb02006.x
  • Singh, R. J. 2019. Cytogenetics and genetic introgression from wild relatives in soybean. Nucleus 62:3–14. doi:10.1007/s13237-019-00263-6
  • Singh, S. P., Upadhyay, S. K., Pandey, A., and Kumar, S. 2019. Molecular approaches in plant biology and environmental challenges. In: Singh, S. P., Upadhyay, S. K., Pandey, A., and Kumar, S., Eds. Molecular Approaches in Plant Biology and Environmental Challenges. Springer: Singapore. pp 1–5.
  • Sun, M., Zhang, Y., Zhu, L., Liu, N., Bai, H., Sun, G., Zhang, J., and Shi, L. 2022. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. Plant Commun. 3:100413. doi:10.1016/j.xplc.2022.100413
  • Szymanski, D. B., Lloyd, A. M., and Marks, M. D. 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 5:214–219. doi:10.1016/s1360-1385(00)01597-1
  • Tanaka, H., Hirakawa, H., Kosugi, S., Nakayama, S., Ono, A., Watanabe, A., Hashiguchi, M., Gondo, T., Ishigaki, G., Muguerza, M., Shimizu, K., Sawamura, N., Inoue, T., Shigeki, Y., Ohno, N., Tabata, S., Akashi, R., and Sato, S. 2016. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Res. 23:171–180. doi:10.1093/dnares/dsw006
  • Thomson, W. W., and Liu, L. L. 1967. Ultrastructural features of the salt gland of Tamarix aphylla L. Planta 73:201–220. doi:10.1007/BF00387033
  • Thomson, W. W., Berry, W. L., and Liu, L. L. 1969. Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc. Natl. Acad. Sci. USA 63:310–317. doi:10.1073/pnas.63.2.310
  • Tominaga, R., Iwata, M., Okada, K., and Wada, T. 2007. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell 19:2264–2277. doi:10.1105/tpc.106.045732
  • Valliyodan, B., Cannon, S. B., Bayer, P. E., Shu, S., Brown, A. V., Ren, L., Jenkins, J., Chung, C. Y.-L., Chan, T.-F., Daum, C. G., Plott, C., Hastie, A., Baruch, K., Barry, K. W., Huang, W., Patil, G., Varshney, R. K., Hu, H., Batley, J., Yuan, Y., Song, Q., Stupar, R. M., Goodstein, D. M., Stacey, G., Lam, H.-M., Jackson, S. A., Schmutz, J., Grimwood, J., Edwards, D., and Nguyen, H. T. 2019. Construction and comparison of three reference‐quality genome assemblies for soybean. Plant J. 100:1066–1082. doi:10.1111/tpj.14500
  • Wada, T., Tachibana, T., Shimura, Y., and Okada, K. 1997. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116. doi:10.1126/science.277.5329.1113
  • Wang, S., and Chen, J.-G. 2014. Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Front. Plant Sci. 5:133. doi:10.3389/fpls.2014.00133
  • Wang, S., Kwak, S.-H., Zeng, Q., Ellis, B. E., Chen, X.-Y., Schiefelbein, J., and Chen, J.-G. 2007. TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134:3873–3882. doi:10.1242/dev.009597
  • Wang, X., Zhou, Y., Xu, Y., Wang, B., and Yuan, F. 2021. A novel gene LbHLH from the halophyte Limonium bicolor enhances salt tolerance via reducing root hair development and enhancing osmotic resistance. BMC Plant Biol. 21:284. doi:10.1186/s12870-021-03094-3
  • Werker, E. 2000. Trichome diversity and development. Adv. Bot. Res. 31:1–35.
  • Xie, M., Chung, C. Y.-L., Li, M.-W., Wong, F.-L., Wang, X., Liu, A., Wang, Z., Leung, A. K.-Y., Wong, T.-H., Tong, S.-W., Xiao, Z., Fan, K., Ng, M.-S., Qi, X., Yang, L., Deng, T., He, L., Chen, L., Fu, A., Ding, Q., He, J., Chung, G., Isobe, S., Tanabata, T., Valliyodan, B., Nguyen, H. T., Cannon, S. B., Foyer, C. H., Chan, T.-F., and Lam, H.-M. 2019. A reference-grade wild soybean genome. Nat. Commun. 10:1216. doi:10.1038/s41467-019-09142-9
  • Xu, Y., Jiao, X., Wang, X., Zhang, H., Wang, B., and Yuan, F. 2021. Importin-β from the recretohalophyte Limonium bicolor enhances salt tolerance in Arabidopsis thaliana by reducing root hair development and abscisic acid sensitivity. Front. Plant Sci. 11:582459. doi:10.3389/fpls.2020.582459
  • Yamamoto, A., Hashiguchi, M., Akune, R., Masumoto, T., Muguerza, M., Saeki, Y., and Akashi, R. 2016. The relationship between salt gland density and sodium accumulation/secretion in a wide selection from three Zoysia species. Aust. J. Bot. 64:277–284. doi:10.1071/BT15261
  • Yuan, F., and Wang, B. 2020. Adaptation of recretohalophytes to salinity. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed. Springer: Cham (Switzerland). pp 1–21.
  • Yuan, F., Leng, B., Zhang, H., Wang, X., Han, G., and Wang, B. 2019. A WD40-repeat protein from the recretohalophyte Limonium bicolor enhances trichome formation and salt tolerance in Arabidopsis. Front. Plant Sci. 10:1456. doi:10.3389/fpls.2019.01456
  • Yuan, F., Lyu, M. A., Leng, B., Zheng, G., Feng, Z., Li, P., Zhu, X., and Wang, B. 2015. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant. Cell Environ. 38:1637–1657. doi:10.1111/pce.12514
  • Yuan, F., Wang, X., Zhao, B., Xu, X., Shi, M., Leng, B., Dong, X., Lu, C., Feng, Z., Guo, J., Han, G., Zhang, H., Huang, J., Chen, M., and Wang, B.-S. 2022. The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution. Mol. Plant. 15:1024–1044. doi:10.1016/j.molp.2022.04.011
  • Yun, P., and Shabala, S. 2021. Ion transport in salt glands and bladders in halophyte species. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed. Springer: Cham (Switzerland). pp 1859–1876.
  • Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T., and Lloyd, A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869. doi:10.1242/dev.00681
  • Zhang, Y., Mutailifu, A., and Lan, H. 2022. Structure, development, and the salt response of salt bladders in Chenopodium album L. Front. Plant Sci. 13:989946. doi:10.3389/fpls.2022.989946
  • Zhao, B., Zhou, Y., Jiao, X., Wang, X., Wang, B., and Yuan, F. 2023. Bracelet salt glands of the recretohalophyte Limonium bicolor: Distribution, morphology, and induction. J. Integr. Plant Biol. 65:950–966. doi:10.1111/jipb.13417
  • Zhao, C., Zhang, H., Song, C., Zhu, J.-K., and Shabala, S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation (Camb) 1:100017. doi:10.1016/j.xinn.2020.100017
  • Zhao, M., Morohashi, K., Hatlestad, G., Grotewold, E., and Lloyd, A. 2008. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999. doi:10.1242/dev.016873
  • Zou, C., Chen, A., Xiao, L., Muller, H. M., Ache, P., Haberer, G., Zhang, M., Jia, W., Deng, P., Huang, R., Lang, D., Li, F., Zhan, D., Wu, X., Zhang, H., Bohm, J., Liu, R., Shabala, S., Hedrich, R., Zhu, J.-K., and Zhang, H. 2017. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 27:1327–1340. doi:10.1038/cr.2017.124
  • Zou, H., Leng, B., Gao, Y., Wang, B., and Yuan, F. 2023. The MYB transcription factor LbCPC of Limonium bicolor negatively regulates salt gland development and salt tolerance. Environ. Exp. Bot 209:105310. doi:10.1016/j.envexpbot.2023.105310