93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

L2 convergence of smooth approximations of stochastic differential equations with unbounded coefficients

ORCID Icon
Pages 354-369 | Received 02 Dec 2020, Accepted 08 Jul 2023, Published online: 17 Oct 2023

References

  • Jakubowski, A., Mémin, J., Pages, G. (1989). Convergence en loi des suites d’intégrales stochastiques sur l’espace D1 de Skorokhod. Probab. Th. Rel. Fields. 81(1):111–137. doi:10.1007/BF00343739.
  • Kurtz, T. G., Protter, P. (1991). Characterizing the weak convergence of stochastic integrals. In M. Barlow & N. Bingham (Eds.), Stochastic Analysis: Proceedings of the Durham Symposium on Stochastic Analysis, 1990 (London Mathematical Society Lecture Note Series, pp. 255-260). Cambridge: Cambridge University Press.
  • Ikeda, N., Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. Japan: North Holland Publishing Company.
  • Sussmann, H. J. (1991). Limits of the Wong-Zakai type with a modified drift term. Stoch. Anal. 475–493. Academic Press.
  • Mcshane, E. J. (1972). Stochastic differential equations and models of random processes. Proc. Sixth Berkeley Symp. Math. Stat. Probab. 3:263–294.
  • Stroock, D. W., Varadhan, S. R. (1972). On the support of diffusion processes with applications to the strong maximum principle. Proc. Sixth Berkeley Symp. Math. Stat. Probab. 3(638):333–359.
  • Nakao, S., Yamato, Y. (1976). Approximation theorem on stochastic differential equations. In Ito, K., ed. Proceedings of the International Symposium on SDE, Kyotop. 283–296.
  • Ikeda, N., Nakao, S., Yamato, Y. (1977). A class of approximations of Brownian motion. Publ. Res. Inst. Math. Sci. 13(1):285–300. doi:10.2977/prims/1195190109.
  • Huisinga, W., Schütte, C., Stuart, A. M. (2003). Extracting macroscopic stochastic dynamics: Model problems. Comm. Pure Appl. Math. 56(2):234–269. doi:10.1002/cpa.10057.
  • Pavliotis, G. A., Stuart, A. M. (2008). Multiscale Methods: Averaging and Homogenization. Springer.
  • Clark, J., Crisan, D. (2005). On a robust version of the integral representation formula of nonlinear filtering. Probab. Theory Relat. Fields. 133(1):43–56. doi:10.1007/s00440-004-0412-5.
  • Del Moral, P., Singh, S. (2020). A backward Itô-Ventzell formula with an application to stochastic interpolation. C.R. Math. 358(7):0–6.
  • Del Moral, P., Singh S. S. (2022). Backward Ito-Ventzell and stochastic interpolation formulae. Stochastic Processes and their Applications 154:197–250.
  • Hairer, M., Pardoux, É. (2015). A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Japan. 67(4):1551–1604.
  • Gyongy, I., Shmatkov, A. (2006). Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Optim.. 54(3):341–341. doi:10.1007/s00245-006-1001-z.
  • Diehl, J., Friz, P. K., Stannat, W. (2014). Stochastic partial differential equations: A rough path view on weak solutions via Feynman–Kac. Annales de la Faculté des sciences de Toulouse: Mathématiques, Serie 6, Vol. 26, pp. 911–947. doi:10.5802/afst.1556.
  • Tessitore, G., Zabczyk, J. (2006). Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equ. 6(4):621–655. doi:10.1007/s00028-006-0280-9.
  • Hu, Y. (2002). An approximation for the Zakai equation. Appl. Math. Optim. 45(1):23–44. doi:10.1007/s00245-001-0024-8.
  • Brzeźniak, Z., Flandoli, F. (1995). Almost sure approximation of Wong-Zakai type for stochastic partial differential equations. Stoch. Process. Appl. 55(2):329–358. doi:10.1016/0304-4149(94)00037-T.
  • Eugene, W., Moshe, Z. (1965). On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2):213–229. doi:10.1016/0020-7225(65)90045-5.
  • Gyöngy, I., Michaletzky, G. (2004). On Wong–Zakai approximations with δ–martingales. Proc. R Soc. Lond. A. 460(2041):309–324. doi:10.1098/rspa.2003.1244.
  • Liu, X., Han, G. (2020). A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discr. Contin. Dyn. Syst. Ser. B. 22:1–10.
  • Protter, P. (1985). Approximations of solutions of stochastic differential equations driven by semimartingales. The Annals of Probability 13(3):716–743.
  • Kurtz, T., Pardoux, E., Protter, P. (1995). Stratonovich stochastic differential equations driven by general semimartingales. Annales de l’I.H.P. Probabilités et statistiques, Vol. 31, pp. 351–377.
  • Hu, Y., Øksendal, B. (1996). Wick approximation of quasilinear stochastic differential equations. In Körezlioğlu, H., Øksendal, B., Üstünel, A. S., eds. Stochastic Analysis and Related Topics V. Boston, MA: Birkhäuser Boston, p. 203–231.
  • Nakayama, T., Tappe, S. (2019). Wong-zakai approximations with convergence rate for stochastic partial differential equations. Stochastic Analysis and Applications, 36, 832–857. DOI:10.1080/07362994.2018.1471402.
  • Gyöngy, I., Stinga, P. R. (2013). Rate of convergence of wong-zakai approximations for stochastic partial differential equations. In Dalang, R. C., Dozzi, M., Russo, F., eds. Seminar on Stochastic Analysis, Random Fields and Applications VII. Basel; Basel: Springer, p. 95–130.
  • Ben Ammou, B. K., Lanconelli, A. (2019). Rate of convergence for Wong–Zakai-type approximations of Itô stochastic differential equations. J. Theor. Probab. 32(4):1780–1803. doi:10.1007/s10959-018-0837-x.
  • Nakayama, T. (2004). Support theorem for mild solutions of SDE’s in Hilbert spaces. J. Math. Sci. Univ. Tokyo. 11(3):245–311.
  • Lyons, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2):215–310.
  • Friz, P., Oberhauser, H. (2009). Rough path limits of the Wong–Zakai type with a modified drift term. J. Funct. Anal. 256(10):3236–3256. doi:10.1016/j.jfa.2009.02.010.
  • Lejay, A. (2006). Stochastic differential equations driven by processes generated by divergence form operators 1: A wong-zakai theorem. ESAIM.:Probability and Statistics, Vol. 10, pp. 356–379.
  • Coutin, L., Friz, P., Victoir, N. (2007). Good rough path sequences and applications to anticipating stochastic calculus. Ann. Probab. 35(3):1172–1193.
  • Friz, P., Hairer, M. (2014). A Course on Rough Paths with an Introduction to Regularity Structures. Springer.
  • Kelly, D., Melbourne, I. (2016). Smooth approximation of stochastic differential equations. Ann. Probab. 44(1):479–520.
  • Friz, P., Victoir, N. (2010). Differential equations driven by Gaussian signals. Annales de l’institut Henri Poincare (B) Probability and Statistics 46(2):369–413.
  • Hutzenthaler, M., Jentzen, A., Kloeden, P. E. (2012). Strong convergence of an explicit numerical method for sdes with nonglobally lipschitz continuous coefficients. Ann. Appl. Probab. 22(4):1611–1641.
  • Pathiraja, S., Reich, S., Stannat, W. (2020). McKean-Vlasov SDEs in nonlinear filtering. SIAM J. Control and Optimization, 59(6), 4188–4215. 10.1137/20m1355197
  • Lejay, A. (2012). Global solutions to rough differential equations with unbounded vector fields. Lect. Notes Math. 2046:215–246.
  • Friz, P., Victoir, N. (2009). Multidimensional stochastic processes as rough paths: Theory and applications. Differential Equations. 672.
  • Lyons, T., Qian, Z. (2002). System Control and Rough Paths. Oxford University Press.
  • Lejay, A. (2003). An introduction to rough paths. In Azéma, J., Ledoux, M., Emery, M., Yor, M., eds., Lectures Notes in Mathematics. Springer, p. 1–59.
  • Gubinelli, M. (2004). Controlling rough paths. J. Funct. Anal. 216(1):86–140. doi:10.1016/j.jfa.2004.01.002.
  • Davie, A. M. (2008). Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. eXpress. 2008(1):1–31.
  • Bailleul, I. (2015). Flows driven by rough paths. Rev. Mat. Iberoam. 31(3):901–934. doi:10.4171/RMI/858.
  • Bailleul, I., Catellier, R. (2018). Non-explosion criteria for rough differential equations driven by unbounded vector fields. Annales de la Faculté des sciences de Toulouse: Mathématiques, Serie 6, Vol. 29(3), pp. 721–759. doi:10.5802/afst.1644.
  • Davie, A. M. (2010). Individual path uniqueness of solutions of stochastic differential equations. In Crisan, D., ed. Stochastic Analysis. Berlin: Springer-Verlag.
  • Coutin, L. (2012). Rough paths via sewing Lemma. ESAIM: PS.. 16:479–526. doi:10.1051/ps/2011108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.