152
Views
0
CrossRef citations to date
0
Altmetric
Articles

Integrated use of GIS and remote sensing techniques for landscape-scale archaeological analysis: the case study of Metaponto, Basilicata, Italy

, , , , , , & ORCID Icon show all
Pages 51-62 | Received 03 Feb 2023, Accepted 27 Jul 2023, Published online: 19 Aug 2023

References

  • Abate, N., A. Elfadaly, N. Masini, and R. Lasaponara. 2020. Multitemporal 2016–2018 sentinel-2 data enhancement for landscape archaeology: The case study of the Foggia province, southern Italy. Remote Sensing 12: 1309. doi:10.3390/rs12081309.
  • Abate, N., A. Frisetti, F. Marazzi, N. Masini, and R. Lasaponara. 2021. Multitemporal–multispectral UAS surveys for archaeological research: The case study of San Vincenzo Al Volturno (Molise, Italy). Remote Sensing 13: 2719. doi:10.3390/rs13142719.
  • Abate, N., and R. Lasaponara. 2019. Preventive archaeology based on open remote sensing data and tools: The cases of Sant’Arsenio (SA) and foggia (FG), Italy. Sustainability 11: 4145. doi:10.3390/su11154145.
  • Abate, N., D. Roubis, V. Vitale, M. Sileo, F. Sogliani, N. Masini, and R. Lasaponara. 2022. Integrated use of multi-temporal multi-sensor and multiscale Remote Sensing data for the understanding of archaeological contexts: The case study of Metaponto, Basilicata. Journal of Physics: Conference Series 2204: 012020. doi:10.1088/1742-6596/2204/1/012020.
  • Adamesteanu, D., D. Mertens, and F. D’Andria. 1975. Metaponto I. Roma, Italy: Accademia Nazionale dei Lincei.
  • Agapiou, A., D. Hadjimitsis, and D. Alexakis. 2012. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sensing 4: 3892–3919. doi:10.3390/rs4123892.
  • Agapiou, A., D.G. Hadjimitsis, A. Sarris, A. Georgopoulos, and D.D. Alexakis. 2013. Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region. Journal of Archaeological Science 40: 1479–1492. doi:10.1016/j.jas.2012.10.036.
  • Agapiou, A., D.G. Hadjimitsis, K. Themistocleous, G. Papadavid, and L. Toulios. 2010. Detection of archaeological crop marks in Cyprus using vegetation indices from Landsat TM/ETM+ satellite images and field spectroscopy measurements. In Presented at the remote sensing, Toulouse, France, eds. U. Michel, and D.L. Civco, 78310V. doi:10.1117/12.864935
  • Agapiou, A., V. Lysandrou, R. Lasaponara, N. Masini, and G.G. Hadjimitsis. 2016. Study of the variations of archaeological marks at neolithic site of lucera, Italy using high-resolution multispectral datasets. Remote Sensing 8: 723. doi:10.3390/rs8090723.
  • Aiazzi, B., L. Alparone, S. Baronti, A. Garzelli, and M. Selva. 2013. Spie proceedings. Proc SPIE 8892: 0889203. doi:10.1117/12.2030560.
  • Alcaras, E., C. Parente, and A. Vallario. 2021. Automation of Pan-sharpening methods for pléiades images using GIS basic functions. Remote Sensing 13: 1550. doi:10.3390/rs13081550.
  • Amani, M., A. Ghorbanian, S.A. Ahmadi, M. Kakooei, A. Moghimi, S.M. Mirmazloumi, S.H.A. Moghaddam, et al. 2020. Google earth engine cloud computing platform for remote sensing Big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13: 5326–5350. doi:10.1109/JSTARS.2020.3021052.
  • Barrile, V., E. Bernardo, A. Fotia, and G. Bilotta. 2022. Integration of laser scanner, ground-penetrating radar, 3D models and mixed reality for artistic, archaeological and cultural heritage dissemination. Heritage 5: 1529–1550. doi:10.3390/heritage5030080.
  • Beck, A. 2007. Archaeological site detection: The importance of contrast. Presented at the Proceedings of the 2007 Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle Upon Tyne, UK, 11–14 September 2007, ISPRS, pp. 307–312.
  • Bertelli, G. 2005. L’insediamento medievale di Torre di Mare (Metaponto) e i suoi rapporti con il territorio. Primi dati. In Presented at the I congresso nazionale di archeologia medievale: auditorium del centro studi della cassa di risparmio di Pisa (ex benedettine), Pisa, 29–31 May 1997, ed. S. Gelichi, 200–205.
  • Bertelli, G., and D. Roubis. 2002. Torre di Mare 1. Ricerche Archeologiche nell’Insediamento Medievale di Metaponto (1995–1999). Bari, Italy: Adda.
  • Calleja, J.F., O. Requejo Pagés, N. Díaz-Álvarez, J. Peón, N. Gutiérrez, E. Martín-Hernández, A. Cebada Relea, D. Rubio Melendi, and P. Fernández Álvarez. 2018. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. International Journal of Applied Earth Observation and Geoinformation 73: 555–573. doi:10.1016/j.jag.2018.07.023.
  • Campana, S., M. Dabas, L. Marasco, S. Piro, and D. Zamuner. 2009. Integration of remote sensing, geophysical surveys and archaeological excavation for the study of a medieval mound (Tuscany, Italy) Archaeol. Prospect 16: 167–176.
  • Campana, S., and M. Forte. eds. 2006. From space to place: 2nd International Conference on Remote Sensing in Archaeology: proceedings of the 2nd international workshop, CNR, Rome, Italy, December 4-7, 2006, BAR international series. Presented at the international conference on remote sensing in archaeology, Archeopress, Oxford. Consiglio nazionale delle ricerche (Italy)
  • Campana, S., and R. Franchovich. 2003. Landscape archaeology in Tuscany: cultural resource management, remotely sensed techniques, GIS based data integration and interpretation. In Presented at the reconstruction of archaeological landscapes through digital technologies, Proceedings of the 1st Italy-United States Workshop, Boston, Massachusetts, USA (November 1–3 2001), eds. M. Forte, and P.R. Williams, 15–28. Oxford, UK: Oxford University Press.
  • Capozzoli, L., G. Romano, M. Sileo, R. Lasaponara, J. Bastante, D. Sieczkowska, and N. Masini. 2022. New results from archaeogeophysical investigations in Machu Picchu. In Machu Picchu in context, eds. M. Ziółkowski, N. Masini, and J.M. Bastante, 265–300. Cham: Springer International Publishing. doi:10.1007/978-3-030-92766-0_7
  • Cerra, D., A. Agapiou, R.M. Cavalli, and A. Sarris. 2018. An objective assessment of hyperspectral indicators for the detection of buried archaeological relics. Remote Sensing 10: 500. doi:10.3390/rs10040500.
  • Chuvieco, E., M.P. Martín, and A. Palacios. 2002. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing 23: 5103–5110. doi:10.1080/01431160210153129.
  • Corrado, G., G. Aiello, D. Barra, P. Di Leo, D. Gioia, M.A. Antonio, R. Parisi, and M. Schiattarella. 2022. Late Quaternary evolution of the Metaponto coastal plain, southern Italy, inferred from geomorphological and borehole data. Quaternary International, 638–639, 84–110. doi:10.1016/j.quaint.2022.01.008.
  • D’Andria, F. 1975. Metaponto romana, in: atti XV conv.M.grecia. Presented at the XV Conv.M.Grecia, Napoli, 539–544.
  • Diara, F., and F. Rinaudo. 2018. Open Source HBIM for Cultural Heritage: A Project Proposal XLII-2, 303–309. doi:10.5194/isprs-archives-XLII-2-303-2018
  • Elfadaly, A., M. Abate, N. Masini, and R. Lasaponara. 2020. Sar sentinel 1 imaging and detection of palaeo-landscape features in the Mediterranean area. Remote Sensing 12: 2611. doi:10.3390/rs12162611.
  • Elfadaly, A., K. Abutaleb, D.M. Naguib, and R. Lasaponara. 2022. Detecting the environmental risk on the archaeological sites using satellite imagery in Basilicata Region, Italy. The Egyptian Journal of Remote Sensing and Space Science 25: 181–193. doi:10.1016/j.ejrs.2022.01.007.
  • Estornell, J., J.M. Martí-Gavliá, M.T. Sebastiá, and J. Mengual. 2013. Principal component analysis applied to remote sensing. Modelling in Science Education and Learning 6: 83. doi:10.4995/msel.2013.1905.
  • Fattore, C., N. Abate, F. Faridani, N. Masini, and R. Lasaponara. 2021. Google earth engine as multi-sensor open-source tool for supporting the preservation of archaeological areas: The case study of flood and fire mapping in metaponto, Italy. Sensors 21: 1791. doi:10.3390/s21051791.
  • Fedi, M., F. Cella, G. Florio, M. La Manna, and V. Paoletti. 2017. Geomagnetometry for archaeology. In Sensing the past, eds. N. Masini, and F. Soldovieri, 203–230. Berlin, Heidelberg: Springer.
  • Forte, M., and S.R.L. Campana2016. Digital methods and remote sensing in archaeology: Archaeology in the Age of sensing, quantitative methods in the humanities and social sciences. Springer International Publishing. doi:10.1007/978-3-319-40658-9
  • Giannotta, M.T. 1980. Metaponto ellenistico-romana. Galatina.: Congedo Editore.
  • Giardino, L. 1982. Metaponto tardo-imperiale e Turiostu: Proposta di identificazione in margine ad un miliarium di Giuliano l’Apostata. Studi Antich 3: 155–173.
  • Giardino, L. 1991. Grumentum e Metaponto. Due esempi di passaggio dal tardoantico all'alto medioevo in Basilicata. Mélanges de L'Ecole Française de Rome. Moyen-Age, Temps Modernes 103: 827–858. doi:10.3406/mefr.1991.3202.
  • Gioia, D., M. Bavusi, et al. 2017. A geoarchaeological study of the Metaponto coastal belt, Southern Italy, based on geomorphological mapping and GIS-supported classification of landforms. Geogr. Fis. E Din. Quat, 137–148. doi:10.4461/GFDQ.2016.39.13.
  • Gioia, D., M. Bavusi, P. Di Leo, T. Giammatteo, and M. Schiattarella. 2020. Geoarchaeology and geomorphology of the Metaponto area, Ionian coastal belt, Italy. Journal of Maps 16: 117–125. doi:10.1080/17445647.2019.1701575.
  • Holata, L., J. Plzák, R. Světlík, and J. Fonte. 2018. Integration of Low-resolution ALS and ground-based SfM photogrammetry data. A cost-effective approach providing an ‘enhanced 3D model’ of the hound Tor archaeological landscapes (Dartmoor, South-West England). Remote Sensing 10: 1357. doi:10.3390/rs10091357.
  • Jensen, J.R. 2016. Introductory digital image processing: A remote sensing perspective, Pearson series in geographic information science. Glenview, IL: Pearson Education, Inc.
  • Khalaf, N., and T. Insoll. 2019. Monitoring Islamic archaeological landscapes in Ethiopia using open source satellite imagery. Journal of Field Archaeology 44: 401–419. doi:10.1080/00934690.2019.1629256.
  • Kumar, L., and O. Mutanga. 2018. Google earth engine applications since inception: usage, trends, and potential. Remote Sensing 10: 1509. doi:10.3390/rs10101509.
  • Lacava, M. 1891. Topografia e Storia di Metaponto. Napoli, Italy: Morano.
  • Larson, D., C. Lipo, and E. Ambos. 2003. Application of advanced geophysical methods and engineering principles in an emerging scientific archaeology: Environmental Geoscience. Undefined.
  • Lasaponara, R., N. Abate, and N. Masini. 2022. On the Use of google earth engine and sentinel data to detect “lost” sections of ancient roads. The case of Via Appia. IEEE Geoscience and Remote Sensing Letters, doi:10.1109/LGRS.2021.3054168.
  • Lasaponara, R., and N. Masini. 2006. Identification of archaeological buried remains based on the normalized difference vegetation index (NDVI) from Quickbird satellite data. IEEE Geoscience and Remote Sensing Letters 3: 325–328. doi:10.1109/LGRS.2006.871747.
  • Lasaponara, R., and N. Masini. 2006. On the potential of QuickBird data for archaeological prospection. International Journal of Remote Sensing 27: 3607–3614. doi:10.1080/01431160500333983.
  • Lasaponara, R., and N. Masini. 2007. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. Journal of Archaeological Science 34: 214–221. doi:10.1016/j.jas.2006.04.014.
  • Liss, B., M.D. Howland, and T.E. Levy. 2017. Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan. Journal of Archaeological Science: Reports 15: 299–304. doi:10.1016/j.jasrep.2017.08.013.
  • Loncan, L., L.B. de Almeida, J.M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, et al. 2015. Hyperspectral pansharpening: A review. IEEE Geoscience and Remote Sensing Magazine 3: 27–46. doi:10.1109/MGRS.2015.2440094.
  • Luo, L., X. Wang, H. Guo, R. Lasaponara, X. Zong, N. Masini, G. Wang, et al. 2019. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment 232: 111280. doi:10.1016/j.rse.2019.111280.
  • Masini, N., and R. Lasaponara. 2006. Satellite-based recognition of landscape archaeological features related to ancient human transformation. Journal of Geophysics and Engineering 3: 230–235. doi:10.1088/1742-2132/3/3/004.
  • Masini, N., and F. Soldovieri. 2017. Sensing the Past: From artifact to historical site, Geotechnologies and the Environment. Cham: Springer International Publishing. doi:10.1007/978-3-319-50518-3
  • Mutanga, O., and L. Kumar. 2019. Google earth engine applications. Remote Sensing 11: 591. doi:10.3390/rs11050591.
  • Orengo, H.A., F.C. Conesa, A. Garcia-Molsosa, A. Lobo, A.S. Green, M. Madella, and C.A. Petrie. 2020. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proceedings of the National Academy of Sciences 117: 18240–18250. doi:10.1073/pnas.2005583117.
  • Parcak, S.H. 2009. Satellite remote sensing for archaeology. London, New York: Routledge.
  • Parcak, S.H. 2014. GIS, remote sensing, and landscape archaeology. Oxford University Press. doi:10.1093/oxfordhb/9780199935413.013.11
  • Persico, R. 2014. Introduction to ground penetrating radar: inverse scattering and data processing. Hoboken, NJ: IEEE Press.
  • Roubis, D. 2012. Ricognizioni infrasito a Santa Maria d’Anglona (Tursi –Mt). In ΑΜΦΙ ΣΙΡΙΟΣ ΡΟΑΣ. nuove ricerche Su eraclea e La siritide, eds. M. Osanna, and G. Zuchtriegel. osanna edizioni, 291–304. Venosa, Italy.
  • Roubis, D. 2015. Archeologia dei paesaggi a Pandosia (S.M. d’Anglona). Siris 15: 163–176.
  • Rouse, J., R.H. Haas, D. Deering, J.A. Schell, and J. Harlan. 1973. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]. undefined.
  • Rowlands, A., and A. Sarris. 2007. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. Journal of Archaeological Science 34: 795–803. doi:10.1016/j.jas.2006.06.018.
  • Stott, D., D. Boyd, A. Beck, and A. Cohn. 2015. Airborne LiDAR for the detection of archaeological vegetation marks using biomass as a proxy. Remote Sensing 7: 1594–1618. doi:10.3390/rs70201594.
  • Štular, B., S. Eichert, and E. Lozić. 2021. Airborne LiDAR point cloud processing for archaeology. pipeline and QGIS toolbox. Remote Sensing 13: 3225. doi:10.3390/rs13163225.
  • Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127–150. doi:10.1016/0034-4257(79)90013-0.
  • White, D.C., M. Williams, and S.L. Barr. 2008. Detecting Sub-surface soil disturbance using hyperspectral first derivative band ratios of associated vegetation stress. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37: 243–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.