145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of microwave treatment on the alkaline extraction of proteins and phenolics from perilla seed meal in varying pH conditions: An optimization study using multicomponent analysis

, , &
Pages 306-329 | Received 22 Mar 2023, Accepted 10 Sep 2023, Published online: 27 Oct 2023

References

  • Abugabr Elhag HEE, Ajit A, Sulaiman AZ. 2020. Optimization and kinetic modelling of total water extracts and water soluble proteins in root extracts of Eurycoma apiculata by microwave assisted extraction. Mater Today: Proc. 31:1–8.
  • Alara OR, Mudalip SKA, Abdurahman NH, Mahmoud MS, Obanijesu EOO. 2019. Data on parametric influence of microwave-assisted extraction on the recovery yield, total ­phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chem Data Collect. 24:100277. doi: 10.1016/j.cdc.2019.100277.
  • Amponsah A, Nayak B. 2016. Effects of microwave and ultrasound assisted extraction on the recovery of soy proteins for soy allergen detection. J Food Sci. 81(11):T2876–T2885. doi: 10.1111/1750-3841.13534.
  • Araújo RG, Rodríguez-Jasso RM, Ruiz HA, Govea-Salas M, Rosas-Flores W, Aguilar-González MA, Pintado ME, Lopez-Badillo C, Luevanos C, Aguilar CN. 2020. Hydrothermal–microwave processing for starch extraction from Mexican avocado seeds: Operational conditions and characterization. Processes. 8(7):759.doi:10.3390/pr8070759.
  • Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants (Basel). 8(4):96. doi: 10.3390/plants8040096.
  • Bagade SB, Patil M. 2021. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit Rev Anal Chem. 51(2):138–149. doi: 10.1080/10408347.2019.1686966.
  • Bedin S, Netto FM, Bragagnolo N, Taranto OP. 2020. Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Sep Sci Technol. 55(2):300–312. doi: 10.1080/01496395.2019.1577449.
  • Bedin S, Zanella K, Bragagnolo N, Taranto OP. 2019. Implication of microwaves on the extraction process of rice bran protein. Braz J Chem Eng. 36(4):1653–1665. doi: 10.1590/0104-6632.20190364s20180599.
  • Behere M, Patil SS, Rathod VK. 2021. Rapid extraction of watermelon seed proteins using microwave and its functional properties. Prep Biochem Biotechnol. 51(3):252–259. doi: 10.1080/10826068.2020.1808792.
  • Chen X, Huang C, Jian R, Wu W, Tang X, Tan Q, Sheng Z, Zhang K. 2019. Optimization of microwave-assisted extraction of soluble dietary fiber from potato pulp and its properties. J. Food Process. Preserv. 43(10).
  • Cheng F, Shu G, Chen L, Dai C, Wan H, Chen H, Dong X. 2021. Ultrasound-microwave assisted extraction of proteins from Moringa oleifera leaves: Comparative optimization study and LC-MS analysis of the protein concentrate. J Food Process Preserv. 45(6):1–13. doi: 10.1111/jfpp.15547.
  • Dhyani A, Chopra R, Garg M. 2019. A review on nutritional value, functional properties and pharmacological application of perilla (Perilla frutescens L.). Biomed Pharmacol J. 12(2):649–660. doi: 10.13005/bpj/1685.
  • Gadalkar SM, Gogate PR, Rathod VK. 2017. Recovery of proteins from rice mill industry waste (rice bran) using alkaline or NaCl-assisted alkaline extraction processes. J Food Process Eng. 40(3):e12430. doi: 10.1111/jfpe.12430.
  • Garcia-Vaquero M, Ummat V, Tiwari B, Rajauria G. 2020. Exploring ultrasound, microwave and ultrasound-microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar Drugs. 18(3):172. doi: 10.3390/md18030172.
  • Garrido T, Gizdavic-Nikolaidis M, Leceta I, Urdanpilleta M, Guerrero P, de la Caba K, Kilmartin PA. 2019. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 88:110–117. doi: 10.1016/j.wasman.2019.03.031.
  • Ghimire BK, Yoo JH, Yu CY, Chung IM. 2017. GC–MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability. Asian Pac J Trop Med. 10(7):643–651. doi: 10.1016/j.apjtm.2017.07.004.
  • Hayat K, Zhang X, Farooq U, Abbas S, Xia S, Jia C, Zhong F, Zhang J. 2010. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123(2):423–429. doi: 10.1016/j.foodchem.2010.04.060.
  • Hihat S, Remini H, Madani K. 2017. Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. Int Food Res J. 24(2):503–509.
  • Hong N, Yaylayan VA, Raghavan GS, Paré JR, Bélanger JM. 2001. Microwave-assisted extraction of phenolic compounds from grape seed. Nat Prod Lett. 15(3):197–204. doi: 10.1080/10575630108041280.
  • Hu Y, Yan H, Yin Y, Li X, Li H, Ren DF. 2022. Effect of microwave-assisted hydrothermal extraction on the bioactive compounds and antioxidant activities of dateplum persimmon juice and vinegar. LWT. 154(June 2021):112642. doi: 10.1016/j.lwt.2021.112642.
  • Iordănescu OA, Băla M, Gligor Zippenfening SE, Cugerean MI, Petroman MI, Hădărugă DI, Hădărugă NG, Riviş M, Pane D. 2021. A DPPH·kinetic approach on the antioxidant activity of various parts and ripening levels of papaya (Carica papaya L.) ethanolic extracts. Plants (Basel). 10(8):1679. doi: 10.3390/plants10081679.
  • Jollife IT, Cadima J. 2016. Principal component analysis: A review and recent developments. Philos Trans A Math Phys Eng Sci. 374(2065):20150202. doi: 10.1098/rsta.2015.0202.
  • Kaderides K, Papaoikonomou L, Serafim M, Goula AM. 2019. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process Process Intensif. 137:1–11. doi: 10.1016/j.cep.2019.01.006.
  • Kalaydzhiev H, Brandão TRS, Ivanova S, Chalova VI. 2019. A two-step factorial design for optimization of protein extraction from industrial rapeseed meal after ethanol-assisted reduction of antinutrients. Int Food Res J. 26(4):1155–1163.
  • Kamboj A, Chopra R, Singh R, Saxena V, Gv PK. 2022. Effect of pulsed electric field parameters on the alkaline extraction of valuable compounds from perilla seed meal and optimization by central composite design approach. Appl Food Res. 2(2):100240. doi: 10.1016/j.afres.2022.100240.
  • Kim JM, Liceaga AM, Yoon KY. 2019. Purification and identification of an antioxidant peptide from perilla seed (Perilla frutescens) meal protein hydrolysate. Food Sci Nutr. 7(5):1645–1655. doi: 10.1002/fsn3.998.
  • Kim JM, Yoon KY. 2020. Functional properties and biological activities of perilla seed meal protein hydrolysates obtained by using different proteolytic enzymes. Food Sci Biotechnol. 29(11):1553–1562. doi: 10.1007/s10068-020-00810-x.
  • Li H, Deng Z, Wu T, Liu R, Loewen S, Tsao R. 2012. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 130(4):928–936. doi: 10.1016/j.foodchem.2011.08.019.
  • Liu N, Chen Q, Li G, Zhu Z, Yi J, Li C, Chen X, Wang Y. 2018. Properties and stability of perilla seed protein-stabilized oil-in-water emulsions: Influence of protein concentration, pH, NaCl concentration and thermal treatment. Molecules. 23(7):1533. doi: 10.3390/molecules23071533.
  • Mandal V, Mohan Y, Hemalatha S. 2007. PhcogRev-1-1-7.pdf. Phcog Rev. 1(1):7–18.
  • Mao Y, Robinson J, Binner E. 2021. Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction. Chem Eng Sci. 233:116418. doi: 10.1016/j.ces.2020.116418.
  • Meng L, Lozano YF, Gaydou EM, Li B. 2008. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules. 14(1):133–140. doi: 10.3390/molecules14010133.
  • Mirzadeh M, Arianejad MR, Khedmat L. 2020. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym. 229:115421. doi: 10.1016/j.carbpol.2019.115421.
  • Nikolaeva TN, Lapshin PV, Zagoskina NV. 2022. Method for determining the total content of phenolic compounds in plant extracts with Folin–Denis reagent and Folin–Ciocalteu reagent: Modification and comparison. Russ J Bioorg Chem. 48(7):1519–1525. doi: 10.1134/S1068162022070214.
  • Nisca A, Ștefănescu R, Moldovan C, Mocan A, Mare AD, Ciurea CN, Man A, Muntean DL, Tanase C. 2022. Optimization of microwave assisted extraction conditions to improve phenolic content and in vitro antioxidant and anti-microbial activity in Quercus cerris bark extracts. Plants (Basel). 11(3):240. doi: 10.3390/plants11030240.
  • Park BY, Yoon KY. 2019. Functional properties of enzymatic hydrolysate and peptide fractions from perilla seed meal protein. Pol J Food Nutr Sci. 69(2):119–127. doi: 10.31883/pjfns-2019-0011.
  • Patra A, Abdullah S, Pradhan RC. 2021. Microwave-assisted extraction of bioactive compounds from cashew apple (Anacardium occidenatale L.) bagasse: modeling and optimization of the process using response surface methodology. Food Measure. 15(5):4781–4793. doi: 10.1007/s11694-021-01042-1.
  • Phongthai S, Lim S-T, Rawdkuen S. 2016. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J Cereal Sci. 70:146–154. doi:10.1016/j.jcs.2016.06.001.
  • Rafiee Z, Jafari SM, Alami M, Khomeiri M. 2011. Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J Anim Plant Sci. 21(4):738–745.
  • Setyani W, Patramurti C, Lestari ABS, McSeer R, Gewab DSM, Bulu MFZI, Kya MRL. 2021. Proximate analysis on animal feed granules composed of raw material from fish innards wastes. Pharm Educ. 21(2):281–286. doi: 10.46542/pe.2021.212.281286.
  • Setyaningsih W, Saputro IE, Palma M, Barroso CG. 2015. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem. 169:141–149. doi: 10.1016/j.foodchem.2014.07.128.
  • Shang A, Luo M, Gan RY, Xu XY, Xia Y, Guo H, Liu Y, Li HB. 2020. Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus rehd.). Antioxidants (Basel). 9(8):678. doi: 10.3390/antiox9080678.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299:152–178. doi: 10.1016/S0076-6879(99)99017-1.
  • Song NB, Lee JH, Song KB. 2015. Preparation of perilla seed meal protein composite films containing various essential oils and their application in sausage packaging. J Korean Soc Appl Biol Chem. 58(1):83–90. doi: 10.1007/s13765-015-0031-0.
  • Soroush DR, Solaimanimehr S, Azizkhani M, Kenari RE, Dehghan B, Mohammadi G, Sadeghi E. 2021. Optimization of microwave-assisted solvent extraction of hemp (Cannabis sativa L.) seed oil using RSM: evaluation of oil quality. Food Measure. 15(6):5191–5202. doi:10.1007/s11694-021-01087-2.
  • Tsubaki S, Sakamoto M, Azuma J i 2010. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chem. 123(4):1255–1258. doi: 10.1016/j.foodchem.2010.05.088.
  • Vinatoru M, Mason TJ, Calinescu I. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends Anal Chem. 97:159–178. doi: 10.1016/j.trac.2017.09.002.
  • Zhao B, Fu S, Li H, Chen Z. 2021. Chemical characterization of Chinese perilla seed oil. J Oleo Sci. 70(11):1575–1583. doi: 10.5650/jos.ess21076.
  • Zhao M, Bai J, Bu X, Tang Y, Han W, Li D, Wang L, Yang Y, Xu Y. 2021. Microwave-assisted aqueous two-phase extraction of phenolic compounds from Ribes nigrum L. and its antibacterial effect on foodborne pathogens. Food Control. 119(June 2020):107449. doi: 10.1016/j.foodcont.2020.107449.
  • Zhao Q, Wang L, Hong X, Liu Y, Li J. 2021. Structural and functional properties of perilla protein isolate extracted from oilseed residues and its utilization in Pickering emulsions. Food Hydrocolloids. 113:106412. doi: 10.1016/j.foodhyd.2020.106412.
  • Zhou XJ, Yan LL, Yin PP, Shi LL, Zhang JH, Liu YJ, Ma C. 2014. Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. Arguta seed flour. Food Chem. 164:150–157. doi: 10.1016/j.foodchem.2014.05.062.
  • Zhu J, Fu Q. 2012. Optimization of ultrasound-assisted extraction process of perilla seed meal proteins. Food Sci Biotechnol. 21(6):1701–1706. doi: 10.1007/s10068-012-0226-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.