147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3-D scanned oven geometry improves the modeling accuracy of the solid-state microwave heating process

, , , , , & ORCID Icon show all
Pages 247-263 | Received 14 Jun 2023, Accepted 23 Aug 2023, Published online: 15 Oct 2023

References

  • Alfaifi B, Tang J, Jiao Y, Wang S, Rasco B, Jiao S, Sablani S. 2014. Radio frequency disinfestation treatments for dried fruit: model development and validation. J Food Eng. 120:268–276. doi:10.1016/j.jfoodeng.2013.07.015.
  • Chen F, Warning AD, Datta AK, Chen X. 2016. Thawing in a microwave cavity: comprehensive understanding of inverter and cycled heating. J Food Eng. 180:87–100. doi:10.1016/j.jfoodeng.2016.02.007.
  • Chen J, Pitchai K, Birla S, Gonzalez R, Jones D, Subbiah J. 2013. Temperature-dependent dielectric and thermal properties of whey protein gel and mashed potato. Trans ASABE. 56:1457–1467. doi:10.13031/trans.56.10314.
  • Chen J, Pitchai K, Birla S, Jones D, Negahban M, Subbiah J. 2016. Modeling heat and mass transport during microwave heating of frozen food rotating on a turntable. Food Bioprod Process. 99:116–127. doi:10.1016/j.fbp.2016.04.009.
  • Chen J, Pitchai K, Birla S, Negahban M, Jones D, Subbiah J. 2014. Heat and mass transport during microwave heating of mashed potato in domestic oven-model development, validation, and sensitivity analysis. J Food Sci. 79(10):E1991–E2004. doi:10.1111/1750-3841.12636.
  • Fia AZ, Amorim J. 2021. Heating of biomass in microwave household oven - A numerical study. Energy. 218:119472. doi:10.1016/j.energy.2020.119472.
  • Geedipalli SSR, Rakesh V, Datta AK. 2007. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J Food Eng. 82(3):359–368. doi:10.1016/j.jfoodeng.2007.02.050.
  • Gulati T, Zhu H, Datta AK. 2016. Coupled electromagnetics, multiphase transport and large deformation model for microwave drying. Chem Eng Sci. 156:206–228. doi:10.1016/j.ces.2016.09.004.
  • He J, Yang Y, Zhu H, Li K, Yao W, Huang K. 2020. Microwave heating based on two rotary waveguides to improve efficiency and uniformity by gradient descent method. Appl Therm Eng. 178:115594. doi:10.1016/j.applthermaleng.2020.115594.
  • Huang Z, Marra F, Subbiah J, Wang S. 2018. Computer simulation for improving radio frequency (RF) heating uniformity of food products: a review. Crit Rev Food Sci Nutr. 58(6):1033–1057. doi:10.1080/10408398.2016.1253000.
  • Jiao Y, Tang J, Wang S. 2014. A new strategy to improve heating uniformity of low moisture foods in radio frequency treatment for pathogen control. J Food Eng. 141:128–138. doi:10.1016/j.jfoodeng.2014.05.022.
  • Kim J, Moreira RG, Huang Y, Castell-Perez ME. 2007. 3-D dose distributions for optimum radiation treatment planning of complex foods. J Food Eng. 79(1):312–321. doi:10.1016/j.jfoodeng.2006.01.061.
  • Kuffi KD, Defraeye T, Nicolai BM, De Smet S, Geeraerd A, Verboven P. 2016. CFD modeling of industrial cooling of large beef carcasses. Int J Refrig. 69:324–339. doi:10.1016/j.ijrefrig.2016.06.013.
  • Perry M, Lentz R. 2021. Susceptors in microwave packaging., in: lorence, M.W., Pesheck, P.S. (Eds.), Development of Packaging and Products for Use in Microwave Ovens. Woodhead Publishing Limited, Cambridge, p. 207–235.
  • Pitchai K, Birla SL, Subbiah J, Jones D, Thippareddi H. 2012. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens. J Food Eng. 112(1-2):100–111. doi:10.1016/j.jfoodeng.2012.03.013.
  • Su T, Zhang W, Zhang Z, Wang X, Zhang S. 2022. Energy utilization and heating uniformity of multiple specimens heated in a domestic microwave oven. Food Bioprod Process. 132:35–51. doi:10.1016/j.fbp.2021.12.008.
  • Uyar R, Erdoğdu F. 2009. Potential use of 3-dimensional scanners for food process modeling. J Food Eng. 93(3):337–343., doi:10.1016/j.jfoodeng.2009.01.034.
  • Wang S, Yue J, Tang J, Chen B. 2005. Mathematical modelling of heating uniformity for in-shell walnuts subjected to radio frequency treatments with intermittent stirrings. Postharvest Biol Technol. 35(1):97–107. doi:10.1016/j.postharvbio.2004.05.024.
  • Yang R, Chen J. 2021. Mechanistic and machine learning modeling of microwave heating process in domestic ovens: a review. Foods. 10(9):2029. doi:10.3390/foods10092029.
  • Yang R, Fathy AE, Morgan MT, Chen J. 2022. Development of online closed-loop frequency shifting strategies to improve heating performance of foods in a solid-state microwave system. Food Res Int. 154:110985. doi:10.1016/j.foodres.2022.110985.
  • Zhang R, Li F, Tang J, Koral T, Jiao Y. 2020. Improved accuracy of radio frequency (RF) heating simulations using 3D scanning techniques for irregular-shape food. LWT- Food Sci Technol. 121:108951. doi:10.1016/j.lwt.2019.108951.
  • Zhou X, Tang Z, Pedrow PD, Sablani SS, Tang J. 2023. Microwave heating based on solid-state generators: new insights into heating pattern, uniformity, and energy absorption in foods. J Food Eng. 357:111650. doi:10.1016/j.jfoodeng.2023.111650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.