1,126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development Of A Vision- based Anti-drone Identification Friend Or Foe Model To Recognize Birds And Drones Using Deep Learning

ORCID Icon, &
Article: 2318672 | Received 13 Mar 2023, Accepted 01 Feb 2024, Published online: 17 Feb 2024

References

  • Akyon, F. C., S. O. Altinuc, and A. Temizel. 2022. Slicing aided hyper inference and fine-tuning for small object detection. 2022 IEEE International Conference on Image Processing (ICIP), 966–29. doi:10.1109/ICIP46576.2022.9897990
  • Alaparthy, V., S. Mandal, and M. Cummings. 2021. Machine learning vs. Human performance in the realtime acoustic detection of drones. 2021 IEEE Aerospace Conference (50100), 1–7. doi:10.1109/AERO50100.2021.9438533
  • Allahham, M. S., T. Khattab, and A. Mohamed. 2020. Deep learning for RF-Based drone detection and identification: A multi-channel 1-D convolutional neural networks approach. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 112–17. doi:10.1109/ICIoT48696.2020.9089657
  • Al-Sa’d, M. F., A. Al-Ali, A. Mohamed, T. Khattab, and A. Erbad. 2019. RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems 100:86–97. doi:10.1016/j.future.2019.05.007.
  • Ashraf, M. W., W. Sultani, and M. Shah. 2021. Dogfight: Detecting drones from drones videos. arXiv 2103:17242 [Cs]. http://arxiv.org/abs/2103.17242.
  • Behera, D. K., and A. Bazil Raj. 2020. Drone detection and classification using deep learning. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 1012–16. doi:10.1109/ICICCS48265.2020.9121150
  • Caltech-UCSD Birds-200-2011. n.d. Accessed March 7, 2022. http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
  • Casabianca, P., and Y. Zhang. 2021. Acoustic-based UAV detection using late fusion of deep neural networks. Drones 5 (3):54. doi:10.3390/drones5030054. Article 3
  • Çetin, E., C. Barrado, and E. Pastor. 2020. Counter a drone in a complex neighborhood area by deep reinforcement learning. Sensors 20 (8):2320. doi:10.3390/s20082320. Article 8
  • Çetin, E., C. Barrado, and E. Pastor. 2021. Improving real-time drone detection for counter-drone systems. The Aeronautical Journal 125 (1292):1871–96. doi:10.1017/aer.2021.43.
  • Choi, Y.-J. 2022. Security threat scenarios of drones and anti-drone technology. Academy of Strategic Management Journal. 21 (1):7.
  • Coluccia, A., A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, M. Méndez, D. de la Iglesia, I. González, J.-P. Mercier, et al. 2021. Drone vs. Bird detection: Deep learning algorithms and results from a grand challenge. Sensors 21 (8):2824. doi:10.3390/s21082824.
  • Coluccia, A., A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, N. Sharma, M. Nalamati, O. Eryuksel, K. A. Ozfuttu, et al. 2022. Drone-vs-bird detection challenge at ICIAP 2021. In Image analysis and processing. ICIAP 2022 workshops, ed. P. L. Mazzeo, E. Frontoni, S. Sclaroff, and C. Distante, vol. 13374, 410–21. Springer International Publishing. doi:10.1007/978-3-031-13324-4_35.
  • Coluccia, A., A. Fascista, A. Schumann, L. Sommer, M. Ghenescu, T. Piatrik, G. De Cubber, M. Nalamati, A. Kapoor, M. Saqib, et al. 2019. Drone-vs-Bird detection challenge at IEEE AVSS2019. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1–7. doi:10.1109/AVSS.2019.8909876
  • Ding, G., Q. Wu, L. Zhang, Y. Lin, T. A. Tsiftsis, and Y.-D. Yao. 2018. An amateur drone surveillance system based on the cognitive internet of things. IEEE Communications Magazine 56 (1):29–35. doi:10.1109/MCOM.2017.1700452.
  • Exploring the Efficacy of Transfer Learning in Mining Image-Based Software Artifacts | Journal of Big Data | Full Text. n.d.-b. Accessed July 21, 2022. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00335-4
  • Fuhrmann, L., O. Biallawons, J. Klare, R. Panhuber, R. Klenke, and J. Ender. 2017. Micro-doppler analysis and classification of UAVs at Ka band. 2017 18th International Radar Symposium (IRS), 1–9. doi:10.23919/IRS.2017.8008142
  • Fujii, S., K. Akita, and N. Ukita. 2021a. Distant bird detection for safe drone flight and its dataset. 2021 17th International Conference on Machine Vision and Applications (MVA), 1–5. doi:10.23919/MVA51890.2021.9511386
  • Fujii, S., K. Akita, and N. Ukita. 2021b. Distant bird detection for safe drone flight and its dataset. 2021 17th International Conference on Machine Vision and Applications (MVA), 1–5. doi:10.23919/MVA51890.2021.9511386
  • Ganti, S. R., and Y. Kim. 2016. Implementation of detection and tracking mechanism for small UAS. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 1254–60. doi:10.1109/ICUAS.2016.7502513
  • Garcia, A. J., J. Min Lee, and D. S. Kim. 2020. Anti-drone system: A visual-based drone detection using neural networks. 2020 International Conference on Information and Communication Technology Convergence (ICTC), 559–61. doi:10.1109/ICTC49870.2020.9289397
  • Ge, R., M. Lee, V. Radhakrishnan, Y. Zhou, G. Li, and G. Loianno. 2022. Vision-Based Relative Detection and Tracking for Teams of Micro Aerial Vehicles ( arXiv:2207.08301). arXiv. http://arxiv.org/abs/2207.08301
  • Gökçe, F., G. Üçoluk, E. Şahin, and S. Kalkan. 2015. Vision-based detection and distance estimation of micro unmanned aerial vehicles. Sensors (Basel, Switzerland) 15 (9):23805–46. doi:10.3390/s150923805.
  • Gong, J., J. Yan, D. Li, D. Kong, and H. Hu. 2019. Interference of radar detection of drones by birds. Progress in Electromagnetics Research M 81:1–11. doi:10.2528/PIERM19020505.
  • Gupta, R., A. Kumari, and S. Tanwar. 2021. Fusion of blockchain and artificial intelligence for secure drone networking underlying 5G communications. Transactions on Emerging Telecommunications Technologies 32 (1). doi:10.1002/ett.4176.
  • Hua, J., L. Zeng, G. Li, and Z. Ju. 2021. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors 21 (4):1278. doi:10.3390/s21041278. Article 4
  • Imai, S., S. Kawai, and H. Nobuhara. 2020. Stepwise PathNet: A layer-by-layer knowledge-selection-based transfer learning algorithm. Scientific Reports 10 (1):8132. doi:10.1038/s41598-020-64165-3.
  • Isaac-Medina, B. K. S., M. Poyser, D. Organisciak, C. G. Willcocks, T. P. Breckon, and H. P. H. Shum. 2021. Unmanned aerial vehicle visual detection and tracking using deep neural networks: A performance benchmark. arXiv 2103.13933 [Cs]. http://arxiv.org/abs/2103.13933
  • Kangunde, V., R. S. Jamisola, and E. K. Theophilus. 2021. A review on drones controlled in real-time. International Journal of Dynamics and Control 9 (4):1832–46. doi:10.1007/s40435-020-00737-5.
  • Kannojia, S. P., and G. Jaiswal. 2018. Effects of varying resolution on performance of CNN based image classification an experimental study. International Journal of Computer Sciences & Engineering 6 (9):451–56. doi:10.26438/ijcse/v6i9.451456.
  • Kolamunna, H., T. Dahanayaka, J. Li, S. Seneviratne, K. Thilakaratne, A. Y. Zomaya, and A. Seneviratne. 2021. DronePrint: Acoustic signatures for open-set drone detection and identification with online data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5 (1):1–31. doi:10.1145/3448115.
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM 60 (6):84–90. doi:10.1145/3065386.
  • Kumar, A., S. Bhatia, K. Kaushik, S. M. Gandhi, S. G. Devi, J. De, D. A. Pacheco, and A. Mashat. 2021. Survey of promising technologies for quantum drones and networks. Institute of Electrical and Electronics Engineers Access 9:125868–911. doi:10.1109/ACCESS.2021.3109816.
  • Kurt, A., N. Saputro, K. Akkaya, and A. S. Uluagac. 2021. Distributed connectivity maintenance in swarm of drones during post-disaster transportation applications. IEEE Transactions on Intelligent Transportation Systems 22 (9):6061–73. doi:10.1109/TITS.2021.3066843.
  • Lai, J., L. Mejias, and J. J. Ford. 2011. Airborne vision-based collision-detection system. Journal of Field Robotics 28 (2):137–57. doi:10.1002/rob.20359.
  • Lee, Z. W., W. H. Chin, and H. W. Ho. 2023. Air-to-air micro air vehicle interceptor with an embedded mechanism and deep learning. Aerospace Science and Technology 135:108192. doi:10.1016/j.ast.2023.108192.
  • Ling, S., F. Zhu, and X. Li. 2015. Transfer learning for visual categorization: A survey. IEEE Transactions on Neural Networks and Learning Systems 26 (5):1019–34. doi:10.1109/TNNLS.2014.2330900.
  • Lin Tan, L. K., B. C. Lim, G. Park, K. H. Low, and V. C. Seng Yeo. 2021. Public acceptance of drone applications in a highly urbanized environment. Technology in Society 64:101462. doi:10.1016/j.techsoc.2020.101462.
  • Mahdavi, F., and R. Rajabi. 2020. Drone detection using convolutional neural networks. 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), 1–5. doi:10.1109/ICSPIS51611.2020.9349620
  • Oh, H. M., H. Lee, and M. Y. Kim. 2019. Comparing Convolutional Neural Network (CNN) models for machine learning-based drone and bird classification of anti-drone system. In 2019 19th International Conference on Control, Automation and Systems (ICCAS) (pp. 87-90). IEEE.
  • Osco, L. P., J. Marcato Junior, A. P. Marques Ramos, L. A. de Castro Jorge, S. N. Fatholahi, J. de Andrade Silva, E. T. Matsubara, H. Pistori, W. N. Gonçalves, and J. Li. 2021. A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation 102:102456. doi:10.1016/j.jag.2021.102456.
  • Park, S., H. T. Kim, S. Lee, H. Joo, and H. Kim. 2021. Survey on anti-drone systems: Components, designs, and challenges. Institute of Electrical and Electronics Engineers Access 9:42635–59. doi:10.1109/ACCESS.2021.3065926.
  • Patel, J. S., F. Fioranelli, and D. Anderson. 2018. Review of radar classification and RCS characterisation techniques for small UAVs or drones. IET Radar, Sonar & Navigation 12 (9):911–19. doi:10.1049/iet-rsn.2018.0020.
  • Pawełczyk, M. Ł., and M. Wojtyra. 2020. Real world object detection dataset for quadcopter unmanned aerial vehicle detection. Institute of Electrical and Electronics Engineers Access 8:174394–409. doi:10.1109/ACCESS.2020.3026192.
  • Prechelt, L. (n.d.). Early stopping | but when? 15.
  • Rozantsev, A., V. Lepetit, and P. Fua. 2016. Detecting flying objects using a single moving camera IEEE transactions on pattern analysis and machine intelligence. 39(5): 879–892.
  • Samadzadegan, F., F. Dadrass Javan, F. Ashtari Mahini, and M. Gholamshahi. 2022. Detection and recognition of drones based on a deep convolutional neural network using visible imagery. Aerospace 9 (1):31. doi:10.3390/aerospace9010031.
  • Schindler, A., T. Lidy, and A. Rauber. n.d. Comparing shallow versus deep neural network architectures for automatic music genre classification, vol. 5.
  • Seidaliyeva, U., D. Akhmetov, L. Ilipbayeva, and E. T. Matson. 2020. Real-time and accurate drone detection in a video with a static background. Sensors 20 (14):3856. doi:10.3390/s20143856.
  • Serrano-Hernandez, A., A. Ballano, and J. Faulin. 2021. Selecting freight transportation modes in last-mile urban distribution in Pamplona (Spain): An option for drone delivery in smart cities. Energies 14 (16):4748. doi:10.3390/en14164748.
  • Shi, X., C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen. 2018. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges. IEEE Communications Magazine 56 (4):68–74. doi:10.1109/MCOM.2018.1700430.
  • Spanaki, K., E. Karafili, U. Sivarajah, S. Despoudi, and Z. Irani. 2021. Artificial intelligence and food security: Swarm intelligence of AgriTech drones for smart AgriFood operations. Production Planning & Control 33 (16):1498–516. doi:10.1080/09537287.2021.1882688.
  • Svaigen, A. R., L. M. S. Bine, G. L. Pappa, L. B. Ruiz, and A. A. F. Loureiro (2021). Automatic drone identification through rhythm-based features for the internet of drones. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 1417–21. doi:10.1109/ICTAI52525.2021.00225
  • Taha, B., and A. Shoufan. 2019. Machine learning-based drone detection and classification: State-of-the-art in research. Institute of Electrical and Electronics Engineers Access 7:138669–82. doi:10.1109/ACCESS.2019.2942944.
  • Torvik, B., K. E. Olsen, and H. Griffiths. 2016. Classification of birds and UAVs based on radar polarimetry. IEEE Geoscience and Remote Sensing Letters 13 (9):1305–09. doi:10.1109/LGRS.2016.2582538.
  • Unlu, E., E. Zenou, and N. Rivière. 2018. Using shape descriptors for UAV detection. Electronic Imaging 2017 (9):128–5. https://hal.archives-ouvertes.fr/hal-01740282.
  • Upadhyay, M., S. K. Murthy, and A. A. B. Raj. 2021. Intelligent system for real time detection and classification of aerial targets using CNN. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 1676–81. doi:10.1109/ICICCS51141.2021.9432136
  • U.S.C. Title 49—TRANSPORTATION. n.d.-c. Accessed March 15, 2021. https://www.govinfo.gov/content/pkg/USCODE-2018-title49/html/USCODE-2018-title49-subtitleVII-partA-subpartiii-chap448-sec44801.htm
  • Wang, P., E. Fan, and P. Wang. 2021. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters 141:61–67. doi:10.1016/j.patrec.2020.07.042.
  • Wang, Z., L. Qi, Y. Tie, Y. Ding, and Y. Bai. 2018. Drone detection based on FD-HOG descriptor. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 433–33. doi:10.1109/CyberC.2018.00084
  • Wu, Y., Y. Sui, and G. Wang. 2017. Vision-based real-time aerial object localization and tracking for UAV sensing system. Institute of Electrical and Electronics Engineers Access 5:23969–78. doi:10.1109/ACCESS.2017.2764419.
  • Yang, X., Y. Zhang, W. Lv, and D. Wang. 2021. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy 163:386–97. doi:10.1016/j.renene.2020.08.125.
  • Yasmine, G., G. Maha, and M. Hicham. 2022. Survey on current anti-drone systems: Process, technologies, and algorithms. International Journal of System of Systems Engineering 12 (3):235–70. doi:10.1504/IJSSE.2022.125947.
  • Yasmine, G., G. Maha, and M. Hicham. 2023. Anti-drone systems: An attention based improved YOLOv7 model for a real-time detection and identification of multi-airborne target. Intelligent Systems with Applications 20:200296. doi:10.1016/j.iswa.2023.200296.
  • Zeng, Y., Q. Duan, X. Chen, D. Peng, Y. Mao, and K. Yang. 2021. UAVData: A dataset for unmanned aerial vehicle detection. Soft Computing 25 (7):5385–93. doi:10.1007/s00500-020-05537-9.
  • Zhao, J., J. Zhang, D. Li, and D. Wang. 2022. Vision-Based Anti-UAV Detection and Tracking ( arXiv:2205.10851). arXiv. http://arxiv.org/abs/2205.10851
  • Zheng, Y., Z. Chen, D. Lv, Z. Li, Z. Lan, and S. Zhao. 2021. Air-to-air visual detection of micro-UAVs: An experimental evaluation of deep learning. IEEE Robotics and Automation Letters 6 (2):1020–27. doi:10.1109/LRA.2021.3056059.
  • Zhong, G., X. Ling, and L. Wang. 2019. From shallow feature learning to deep learning: Benefits from the width and depth of deep architectures. WIREs Data Mining and Knowledge Discovery 9 (1). doi:10.1002/widm.1255.
  • Zhu, W., B. Braun, L. H. Chiang, and J. A. Romagnoli. 2021. Investigation of transfer learning for image classification and impact on training sample size. Chemometrics and Intelligent Laboratory Systems 211:104269. doi:10.1016/j.chemolab.2021.104269.