845
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DWS-YOLO: A Lightweight Detector for Blood Cell Detection

, , , , &
Article: 2318673 | Received 14 Jun 2023, Accepted 04 Feb 2024, Published online: 22 Feb 2024

References

  • Acharya, V., and P. Kumar. 2017. Identification and red blood cell automated counting from blood smear images using computer-aided system. Medical & Biological Engineering & Computing 56 (3):483–26. doi:10.1007/s11517-017-1708-9.
  • Alam, M. M., and M. Tariqul Islam. 2019. Machine learning approach of automatic identification and counting of blood cells. Healthcare Technology Letters 6 (4):103–08. doi:10.1049/htl.2018.5098.
  • Atkins, C. G., K. Buckley, M. W. Blades, and R. F. Turner. 2017. Raman spectroscopy of blood and blood components. Applied Spectroscopy 71 (5):767–93. doi:10.1177/0003702816686593.
  • Biswas, S., and D. Ghoshal. 2016. Blood cell detection using thresholding estimation based watershed transformation with Sobel filter in frequency domain. Procedia Computer Science 89:651–57. doi:10.1016/j.procs.2016.06.029.
  • Bochkovskiy, A., C.-Y. Wang, and H.-Y. Mark Liao. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv Preprint arXiv 2004:10934.
  • Bodla, N., B. Singh, R. Chellappa, and L. S. Davis. 2017. Soft-NMS–improving object detection with one line of code. Proceedings of the Ieee International Conference on Computer Vision (ICCV), Venice, Italy, 5562–70. doi:10.1109/ICCV.2017.593.
  • Chan, L. L.-Y., D. J. Laverty, T. Smith, P. Nejad, H. Hei, R. Gandhi, D. Kuksin, and J. Qiu. 2013. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error. Journal of Immunological Methods 388 (1–2):25–32. doi:10.1016/j.jim.2012.11.010.
  • Chao, Y.-L., P.-Y. Wu, J.-C. Huang, Y.-W. Chiu, J.-J. Lee, S.-C. Chen, J.-M. Chang, S.-J. Hwang, and H.-C. Chen. 2022. Hepatic steatosis is associated with high white blood cell and platelet counts. Biomedicines 10 (4):892. doi:10.3390/biomedicines10040892.
  • Chollet, F. 2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 1800–07. doi:10.1109/CVPR.2017.195.
  • Choudhary, O. P., R. Sarkar, G. E. Chethan, P. Jyoti Doley, P. Chandra Kalita, A. Kalita. 2021. Preparation of blood samples for electron microscopy: The standard protocol. Annals of Medicine & Surgery 70:102895. doi:10.1016/j.amsu.2021.102895.
  • Choudhary, O. P., R. Sarkar, F. A. Madkour, P. Chandra Kalita, P. Jyoti Doley, A. Kalita, P. Choudhary, and C. Gollahalli Eregowda. 2023. Peripheral blood cells of native pig (zovawk) of Mizoram, India: Light and scanning electron microscopy analysis. Microscopy Research and Technique 86 (3):331–41. doi:10.1002/jemt.24274.
  • Everingham, M., S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. 2015. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision 111 (1):98–136. doi:10.1007/s11263-014-0733-5.
  • Farhadi, A., and J. Redmon. 2018. Yolov3: An incremental improvement. arXiv Preprint arXiv 1804:02767.
  • Ge, Z., S. Liu, F. Wang, Z. Li, and J. Sun. 2021. Yolox: Exceeding yolo series in 2021. arXiv Preprint arXiv 2107:08430.
  • Gevorgyan, Z. 2022. SIoU loss: More powerful learning for bounding box regression. arXiv Preprint arXiv 2205:12740.
  • Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv Preprint arXiv 1311:2524.
  • Gulshan, V., L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al. 2016. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316 (22):2402–10. doi:10.1001/jama.2016.17216.
  • Hang, J., Y. Wu, Y. Li, T. Lai, J. Zhang, and Y. Li. 2023. A deep learning semantic segmentation network with attention mechanism for concrete crack detection. Structural Health Monitoring 22 (5):3006–26. doi:10.1177/14759217221126170.
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2017. Mask r-cnn. arXiv Preprint arXiv 1703:06870.
  • He, W., Y. Han, W. Ming, J. Du, Y. Liu, Y. Yang, L. Wang, Y. Wang, Z. Jiang, C. Cao, et al. 2022. Progress of machine vision in the detection of cancer cells in histopathology. IEEE Access 10:46753–71. doi:10.1109/ACCESS.2022.3161575.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–78. doi:10.1109/CVPR.2016.90.
  • Hou, Q., D. Zhou, and J. Feng. 2021. Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 13713–22. doi:10.1109/CVPR46437.2021.01350.
  • Howard, A., M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang. 2019. Searching for mobilenetv3. Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR), Seoul, Korea (South), 1314–24. doi:10.1109/ICCV.2019.00140.
  • Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv Preprint arXiv 1704:04861.
  • Huang, W., Y. Huo, S. Yang, M. Liu, H. Li, and M. Zhang. 2023. Detection of laodelphax striatellus (small brown planthopper) based on improved YOLOv5. Computers and Electronics in Agriculture 206:107657. doi:10.1016/j.compag.2023.107657.
  • Hu, J., L. Shen, and G. Sun. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 7132–41. doi:10.1109/CVPR.2018.00745.
  • Hwang, B., J. Kim, S. Lee, E. Kim, J. Kim, Y. Jung, and H. Hwang. 2022. Automatic detection and segmentation of thrombi in abdominal aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors 22 (10):3643. doi:10.3390/s22103643.
  • Islam, M. T., M. Abdul Aowal, A. Tahseen Minhaz, and K. Ashraf. 2017. Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv Preprint arXiv 1705:09850.
  • Jocher, G. 2020. YOLOv5 by Ultralytics v 6.1. https://github.com/ultralytics/yolov5.
  • Kouzehkanan, Z. M., S. Saghari, S. Tavakoli, P. Rostami, M. Abaszadeh, F. Mirzadeh, E. Shahabi Satlsar, M. Gheidishahran, F. Gorgi, S. Mohammadi, et al. 2022. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm. Scientific Reports 12(1):1123. doi:10.1038/s41598-021-04426-x.
  • Kutlu, H., E. Avci, and F. Özyurt. 2020. White blood cells detection and classification based on regional convolutional neural networks. Medical Hypotheses 135:109472. doi:10.1016/j.mehy.2019.109472.
  • Li, C., L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke. 2022. YOLOv6: A single-stage object detection framework for industrial applications. arXiv Preprint arXiv 2209:02976.
  • Li, H., J. Li, H. Wei, Z. Liu, Z. Zhan, and Q. Ren. 2022. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv Preprint arXiv 2206:02424.
  • Liu, K. 2022. Stbi-YOLO: A real-time object detection method for lung nodule recognition. IEEE Access 10:75385–94. doi:10.1109/ACCESS.2022.3192034.
  • Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. 2016. Ssd: Single shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, 21–37. Springer.
  • Liu, R., A. K. M. Arifuzzman, N. Wang, O. Civelekoglu, and A. Fatih Sarioglu. 2020. Electronic immunoaffinity assay for differential leukocyte counts. Journal of Microelectromechanical Systems 29 (5):942–47. doi:10.1109/JMEMS.2020.3012305.
  • Ma, N., X. Zhang, H.-T. Zheng, and J. Sun. 2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. arXiv Preprint arXiv 1807:11164.
  • Pacal, I., and D. Karaboga. 2021. A robust real-time deep learning based automatic polyp detection system. Computers in Biology and Medicine 134:104519. doi:10.1016/j.compbiomed.2021.104519.
  • Patil, P. R., G. S. Sable, and G. Anandgaonkar. 2014. Counting of WBCs and RBCs from blood images using gray thresholding. International Journal of Research in Engineering and Technology 3 (4):391–95. doi:10.15623/ijret.2014.0304071.
  • Pei, D., M. Jing, H. Liu, F. Sun, and L. Jiang. 2020. A fast RetinaNet fusion framework for multi-spectral pedestrian detection. Infrared Physics & Technology 105:103178. doi:10.1016/j.infrared.2019.103178.
  • Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2015. You only look once: Unified, real-time object detection. arXiv Preprint arXiv 1506: 02640.
  • Redmon, J., and A. Farhadi. 2017. YOLO9000: better, faster, stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 6517–25. doi:10.1109/CVPR.2017.690.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2017. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6):1137–49 doi:10.1109/TPAMI.2016.2577031.
  • Roboflow. 2021. BCCD dataset. Accessed February 2021. https://public.roboflow.com/object-detection/bccd/.
  • Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 4510–20. doi:10.1109/CVPR.2018.00474.
  • Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 618–26. doi:10.1109/ICCV.2017.74.
  • Shakarami, A., M. Bagher Menhaj, A. Mahdavi-Hormat, and H. Tarrah. 2021. A fast and yet efficient YOLOv3 for blood cell detection. Biomedical Signal Processing and Control 66:102495. doi:10.1016/j.bspc.2021.102495.
  • Shao, M., P. He, Y. Zhang, S. Zhou, N. Zhang, and J. Zhang. 2023. Identification method of cotton leaf diseases based on bilinear coordinate attention enhancement module. Agronomy 13 (1):88. doi:10.3390/agronomy13010088.
  • Sun, Y., J. Song, Y. Li, Y. Li, S. Li, and Z. Duan. 2023. IVP-YOLOv5: An intelligent vehicle-pedestrian detection method based on YOLOv5s. Connection Science 35 (1):2168254. doi:10.1080/09540091.2023.2168254.
  • Talukdar, K., K. Bora, L. B. Mahanta, and A. K. Das. 2022. A comparative assessment of deep object detection models for blood smear analysis. Tissue and Cell 76:101761. doi:10.1016/j.tice.2022.101761.
  • Tavakoli, S., A. Ghaffari, Z. Mousavi Kouzehkanan, and R. Hosseini. 2021. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports 11 (1):19428. doi:10.1038/s41598-021-98599-0.
  • Wang, C.-Y., A. Bochkovskiy, and H.-Y. Mark Liao. 2022. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv Preprint arXiv 2207:02696.
  • Wang, H., D. Han, M. Cui, and C. Chen. 2023. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Connection Science 35 (1):1–32. doi:10.1080/09540091.2023.2257399.
  • Wang, Q., B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu. 2020. ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 11534–42. doi:10.1109/CVPR42600.2020.01155.
  • Woo, S., J. Park, J.-Y. Lee, and I. So Kweon. 2018. Cbam: Convolutional block attention module. arXiv Preprint arXiv 1807: 0652.
  • Xia, T., Y. Q. Fu, N. Jin, P. Chazot, P. Angelov, and R. Jiang. 2020. AI-enabled microscopic blood analysis for microfluidic COVID-19 hematology. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 98–102. IEEE. doi:10.1109/ICCIA49625.2020.00026.
  • Xu, F., X. Li, H. Yang, Y. Wang, and W. Xiang. 2022. TE-YOLOF: Tiny and efficient YOLOF for blood cell detection. Biomedical Signal Processing and Control 73:103416. doi:10.1016/j.bspc.2021.103416.
  • Yadav, A., and A. Yadav. 2021. An intelligent model for the detection of white blood cells using artificial intelligence. Computer Methods and Programs in Biomedicine 199:105893. doi:10.1016/j.cmpb.2020.105893.
  • Yang, X., J. Zhao, H. Zhang, C. Dai, L. Zhao, Z. Ji, and I. Ganchev. 2022. Remote sensing image detection based on YOLOv4 improvements. Institute of Electrical and Electronics Engineers Access 10:95527–38. doi:10.1109/ACCESS.2022.3204053.
  • Yu, J., Y. Jiang, Z. Wang, Z. Cao, and T. Huang. 2016. Unitbox: An advanced object detection network. Proceedings of the 24th ACM International Conference on Multimedia, New York, NY, USA, 516–20. doi:10.1145/2964284.2967274.
  • Zhang, Y.-F., W. Ren, Z. Zhang, Z. Jia, L. Wang, and T. Tan. 2022. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506:146–57. doi:10.1016/j.neucom.2022.07.042.
  • Zhang, X., X. Zhou, M. Lin, and J. Sun. 2018. Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv Preprint arXiv 1707: 01083.
  • Zhao, M., J. Kawahara, K. Abhishek, S. Shamanian, and G. Hamarneh. 2022. Skin3D: Detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes. Medical Image Analysis 77:102329. doi:10.1016/j.media.2021.102329.
  • Zhao, Z., N. Lv, R. Xiao, Q. Liu, and S. Chen. 2023. Recognition of penetration states based on arc sound of interest using VGG-SE network during pulsed GTAW process. Journal of Manufacturing Processes 87:81–96. doi:10.1016/j.jmapro.2022.12.034.
  • Zheng, Z., P. Wang, W. Liu, J. Li, R. Ye, and D. Ren. 2020. Distance-IoU loss: Faster and better learning for bounding box regression. arXiv Preprint arXiv 1911:08287.
  • Zheng, Z., P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo. 2021. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics 52 (8):8574–86. doi:10.1109/TCYB.2021.3095305.