307
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D Gaussian Geometric Moment Invariants

Article: 2318983 | Received 29 Nov 2022, Accepted 05 Feb 2024, Published online: 26 Feb 2024

References

  • Aggarwal, A., and C. Singh. 2016. Zernike moments-based Gurumukhi character recognition. Applied Artificial Intelligence 30 (5):429–21. doi:10.1080/08839514.2016.1185859.
  • Amakdouf, H., A. Zouhri, M. El Mallahi, A. Tahiri, D. Chenouni, and H. Qjidaa. 2021. Artificial intelligent classification of biomedical color image using quaternion discrete radial Tchebichef moments. Multimedia Tools and Applications 80 (2):3173–92. doi:10.1007/s11042-020-09781-x.
  • Amakdouf, H., A. Zouhri, M. E. Mallahi, A. Tahiri, and H. Qjidaa. 2018. Translation scaling and rotation invariants of 3D Krawtchouk moments. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 1–6. doi:10.1109/ISACV.2018.8354059.
  • Bedratyuk, L. 2020. 3D geometric moment invariants from the point of view of the classical invariant theory. arXiv: Journal of Mathematical Imaging and Vision 62 (8):1062–75. doi:10.1007/s10851-020-00954-9.
  • Bin, X., J. Luo, X. Bi, W. Li, and C. Beijing. 2020. Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking. Information Sciences 516:545–59. doi:10.1016/j.ins.2019.12.044.
  • Canterakis, N. 1999. 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland, 85–93. DSAGM.
  • Cyganski, D., and J. A. Orr. 1988. Object recognition and orientation determination by tensor methods. In Advances in computer vision and image processing, 101–44. Greenwich, Connecticut, USA: JAI Press.
  • Dong, X., and L. Hua. 2006. 3-D affine moment invariants generated by geometric primitives. In International Conference on Pattern Recognition, 544–47. IEEE Computer Society, Los Alamitos, California, USA.
  • Flusser, J., T. Suk, and B. Zitova. 2016. 2D and 3D image analysis by moments. Chichester, West Sussex, UK: John Wiley and Sons.
  • Galvez, J. M., and M. Canton. 1993. Normalization and shape recognition of three-dimensional objects by 3D moments. Pattern Recognition 26 (5):667–81. doi:10.1016/0031-3203(93)90120-L.
  • Guo, K. H., C. C. Liu, and J. Y. Yang. 2009. Application of curved surface moment invariants. Journal of System Simulation 21 (6):1599–601.
  • Hjouji, A. 2022. Orthogonal invariant LaGrange-Fourier moments for image recognition. Expert Systems with Application Aug:199. doi:10.1016/j.eswa.2022.117126.
  • Hu, M. K. 1962. Visual pattern recognition by moment invariants. IRE Trans Information Theory 8 (3):179–87. doi:10.1109/TIT.1962.1057692.
  • Jahid, T., H. Karmouni, M. Sayyouri, A. Hmimid, and H. Qjidaa. 2019. Fast algorithm of 3D discrete image orthogonal moments computation based on 3D cuboid. Journal of Mathematical Imaging and Vision 61 (4):534–54. doi:10.1007/s10851-018-0860-7.
  • Karmouni, H., M. Yamni, O. El Ogri, A. Daoui, M. Sayyouri, H. Qjidaa, A. Tahiri, M. Maarouf, and B. Alami. 2021. Fast computation of 3D discrete invariant moments based on 3D cuboid for 3D image classifcation. Circuits, Systems, and Signal Processing 40 (8):3782–812. doi:10.1007/s00034-020-01646-w.
  • Li, Z. M., Y. J. Liu, and H. Li. 2008. 3D model retrieval based on polar-radius surface moment invariants. Journal of Software 18:71–76.
  • Li, Z. M., G. B. Yu, Y. J. Liu, and H. Li. 2006. 3D polar-radius-invariant-moments and their application to 3D model retrieval. Pattern Recognition & Artificial Intelligence 19 (3):362–67.
  • Lo, C. H., and H. S. Don. 1989. 3-D moment forms: Their construction and application to object identification and positioning. Pattern Analysis and Machine Intelligence, IEEE Transactions On 11 (10):1053–64. doi:10.1109/34.42836.
  • Mallahi, M. E., J. E. Mekkaoui, A. Zouhri, H. Amakdouf, and H. Qjidaa. 2018. Rotation scaling and translation invariants of 3D radial shifted Legendre moments. International Journal of Automation & Computing 15 (2):47–58. doi:10.1007/s11633-017-1105-8.
  • Mo, H., H. Hu, and H. Li. 2021. Geometric moment invariants to spatial transform and n-fold symmetric blur. Pattern Recognition 115:107887–107887. doi:10.1016/j.patcog.2021.107887.
  • Novotni, M., and R. Klein. 2003. 3D Zernike descriptors for content based shape retrieval. In ACM symposium on solid modeling and applications, 216–25. Seattle, Washington, USA: ACM.
  • Sadjadi, F. A., and E. L. Hall. 1980. Three-dimensional moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (2):127–36. doi:10.1109/TPAMI.1980.4766990.
  • Shilane, P., P. Min, M. Kazhdan, and T. Funkhouser. 2004. The Princeton shape benchmark. In Shape Modeling Applications, Genova, Italy, 167–178. doi:10.1109/SMI.2004.1314504.
  • Singh, C., and A. Aggarwal. 2020. An effective approach for noise robust and rotation invariant handwritten character recognition using Zernike moments features and optimal similarity measure. Applied Artificial Intelligence 34 (13):1011–37. doi:10.1080/08839514.2020.1796370.
  • Suk, T., and J. Flusser. 2011. Tensor method for constructing 3D moment invariants. In 14th International Conference on Computer Analysis of Images and Patterns, 212–19. Springer, Berlin, Heidelberg.
  • Suk, T., J. Flusser, and B. J. 2015. 3D rotation invariants by complex moments. Pattern Recognition the Journal of the Pattern Recognition Society 48 (11):3516–26. doi:10.1016/j.patcog.2015.05.007.
  • Tadepalli, Y., M. Kollati, S. Kuraparthi, P. Kora, A. K. Budati, and L. K. Pampana. 2021. Content-based image retrieval using Gaussian-Hermite moments and firefly and grey wolf optimization. CAAI Transactions on Intelligence Technology 6 (2):135–46. doi:10.1049/cit2.12040.
  • Wang, C., Q. Zhang, B. Ma, Z. Xia, J. Li, T. Luo, and Q. Li. 2022. Light-field image watermarking based on geranion polar harmonic Fourier moments. Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation 113:104970. doi:10.1016/j.engappai.2022.104970.
  • Wu, Z., S. Jiang, X. Zhou, Y. Wang, Y. Zuo, Z. Wu, L. Liang, and Q. Liu. 2020. Application of image retrieval based on convolutional neural networks and Hu invariant moment algorithm in computer telecommunications. Computer Communications 150:729–38. doi:10.1016/j.comcom.2019.11.053.
  • Yamni, M., A. Daoui, O. El Ogri, H. Karmouni, M. Sayyouri, and H. Qjidaa. 2021. Accurate 2D and 3D images classification using translation and scale invariants of Meixner moments. Multimedia Tools and Applications 80 (17):26683–712. doi:10.1007/s11042-020-10311-y.
  • Yang, B., and J. Flusser. 2014. 2D and 3D image analysis by gaussian-hermite moments. In Moments and moment invariants – Theory and applications, ed. G.A. Papakostas, 143–173. Thrace, Greece: Science Gate Publishing.
  • Yang, B., J. Flusser, and T. Suk. 2015. 3D rotation invariants of Gaussian-Hermite moments. Pattern Recognition Letters 54 (mar1):18–26. doi:10.1016/j.patrec.2014.11.014.
  • Yang, B., J. Kostkova, J. Flusser, and S. T. 2017. Scale invariants from Gaussian-Hermite moments. Signal Processing 132 (mar):77–84. doi:10.1016/j.sigpro.2016.09.013.
  • Yang, H., S. Qi, J. Tian, P. Niu, and X. Wang. 2021. Robust and discriminative image representation: Fractional-order Jacobi-Fourier moments. Pattern Recognition 115:107898. doi:10.1016/j.patcog.2021.107898.
  • Yang, B., T. Suk, J. Flusser, Z. Shi, and X. Chen. 2017. Rotation invariants from Gaussian-Hermite moments of color images. Signal Processing 143 (FEB.):282–91. doi:10.1016/j.sigpro.2017.08.027.
  • Zhang, C., and P. Xi. 2014. Gaussian-geometric moments and its application in feature matching & image registration. Journal of Computer-Aided Design & Computer Graphics 26 (7):1116–25.