406
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatial-temporal Offshore Current Field Forecasting Using Residual-learning Based Purely CNN Methodology with Attention Mechanism

&
Article: 2323827 | Received 16 Aug 2023, Accepted 21 Feb 2024, Published online: 04 Mar 2024

References

  • Ali, M., R. Prasad, Y. Xiang, M. Jamei, and Z. M. Yaseen. 2023. Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting. Renewable Energy 205:731–28. doi:10.1016/j.renene.2023.01.108.
  • Ali, M., R. Prasad, Y. Xiang, A. Sankaran, and R. C. Deo, F. Xiao and S. Zhu. 2021. Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland Australia. Renewable Energy 177:1031–44. doi:10.1016/j.renene.2021.06.052.
  • Aly, H. H. H. 2020. A novel approach for harmonic tidal currents constitutions forecasting using hybrid intelligent models based on clustering methodologies. Renewable Energy 147:1554–64. doi:10.1016/j.renene.2019.09.107.
  • Bhatnagar, S., Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik. 2019. Prediction of aerodynamic flow fields using convolutional neural networks. Computational Mechanics 64 (2):525–45. doi:10.1007/s00466-019-01740-0.
  • Bradbury, J., S. Merity, C. Xiong, R. Soche. 2016. Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576.
  • Dai, G., W. Kong, Y. Liu, Y. Ge, and S. Zhang. 2023. Multi-perspective convolutional neural networks for citywide crowd flow prediction. Applied Intelligence 53 (8):8994–9008. doi:10.1007/s10489-022-03980-9.
  • Gibbs, L., R. J. Bingham, and A. Paiement. 2023. A novel filtering method for geodetically determined ocean surface currents using deep learning. Environmental Data Science 2:e44. doi:10.1017/eds.2023.41.
  • Hodges Jr., J. L., 1958. The significance probability of the Smirnov two-sample test. Arkiv för matematik 3 (5):469–86. doi:10.1007/BF02589501.
  • Immas, A., N. Do, and M. R. Alam. 2021. Real-time in situ prediction of ocean currents. Ocean Engineering 228:108922. doi:10.1016/j.oceaneng.2021.108922.
  • Kalinić, H., H. Mihanović, S. Cosoli, M. Tudor, and I. Vilibić. 2017. Predicting ocean surface currents using numerical weather prediction model and Kohonen neural network: A northern Adriatic study. Neural Computing and Applications 28 (S1):611–20. doi:10.1007/s00521-016-2395.
  • Katharopoulos, A., A. Vyas, N. Pappas, and F. Fleuret. 2020. Transformers are RNNs: Fast autoregressive transformers with linear attention. In International conference on machine learning, pp. 5156–5165. PMLR.
  • Khare, V., and M. A. Bhuiyan. 2022. Tidal energy-path towards sustainable energy: A technical review. Cleaner Energy Systems 3:100041. doi:10.1016/j.cles.2022.100041.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Liu, L., and J. Wang. 2021. Super multi-step wind speed forecasting system with training set extension and horizontal-vertical integration neural network. Applied Energy 292:1–13. doi:10.1016/j.apenergy.2021.116908.
  • Liu, G., Q. Zhou, X. Xie, and Q. Yu. 2023. Dual conditional GAN based on external attention for semantic image synthesis. Connection Science 35 (1):2259120. doi:10.1080/09540091.2023.2259120.
  • Ma, J., and J. Chen. 2023. Reconstructing higher-resolution four-dimensional time-varying volumetric data. Connection Science 35 (1):2289837. doi:10.1080/09540091.2023.2289837.
  • Manucharyan, G. E., L. Siegelman, and P. Klein. 2021. A deep learning approach to spatiotemporal sea surface height interpolation and estimation of deep currents in geostrophic ocean turbulence. Journal of Advances in Modelling Earth Systems 13 (1):e2019MS001965. doi:10.1029/2019MS001965.
  • Meyer, G. P., 2021. An alternative probabilistic interpretation of the huber loss. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 5261–9.
  • Monahan, T., T. Tang, and T. A. A. Adcock. 2023. A hybrid model for online short-term tidal energy forecasting. Applied Ocean Research 137:103596. doi:10.1016/j.apor.2023.103596.
  • Neill, S. P., M. R. Hashemi, and M. J. Lewis. 2014. The role of tidal asymmetry in characterizing the tidal energy resource of orkney. Renewable Energy 68:337–50. doi:10.1016/j.renene.2014.01.052.
  • Neshat, M., M. M. Nezhad, N. Y. Sergiienko, S. Mirjalili, G. Piras, and D. A. Garcia. 2022. Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium nelder-mead optimizer. Energy 256:124623. doi:10.1016/j.energy.2022.124623.
  • Nezhad, M. M., M. Neshat, G. Sylaios, and D. A. Garcia. 2024. Marine energy digitalization digital twin’s approaches. Renewable and Sustainable Energy Reviews 191:114065. doi:10.1016/j.rser.2023.114065.
  • Niu, Z., G. Zhong, and H. Yu. 2021. A review on the attention mechanism of deep learning. Neurocomputing 452:48–62. doi:10.1016/j.neucom.2021.03.091.
  • O’Dea, E. J., A. K. Arnold, K. P. Edwards, R. Furner, P. Hyder, M. J. Martin, J. R. Siddorn, D. Storkey, J. While, J. T. Holt, et al. 2012. An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf. Journal of Operational Oceanography 5 (1):3–17. doi:10.1080/1755876X.2012.11020128.
  • Qian, P., B. Feng, X. Liu, D. Zhang, J. Yang, Y. Ying, C. Liu, and Y. Si. 2022. Tidal current prediction based on a hybrid machine learning method. Ocean Engineering 260:111985. doi:10.1016/j.oceaneng.2022.111985.
  • Ren, L., Z. Hu, and M. Hartnett. 2018. Short-term forecasting of coastal surface currents using high frequency radar data and artificial neural networks. Remote Sensing 10 (6):850. doi:10.3390/rs10060850.
  • Röhrs, J., G. Sutherland, G. Jeans, M. Bedington, A. K. Sperrevik, K.-F. Dagestad, Y. Gusdal, C. Mauritzen, A. Dale, and J. H. La-Casce. 2021. Surface currents in operational oceanography: Key applications, mechanisms, and methods. Journal of Operational Oceanography 6 (1):60–88. doi:10.1080/1755876X.2021.1903221.
  • Ronneberger, O., P. Fischer, and T. Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and Computer-Assisted Intervention–MICCAI 2015: 18th international conference, ed. N. Nassir, J. Hornegger, W. M. Wells, and A. F. Frangi, 234–41. October 5–9, 2015 Proceedings, Part III vol. 18. Munich, Germany: Springer International Publishing.
  • Sarkar, D., M. A. Osborne, and T. A. A. Adcock. 2018. Prediction of tidal currents using Bayesian machine learning. Ocean Engineering 158:221–31. doi:10.1016/j.oceaneng.2018.03.007.
  • Sarkar, D., M. A. Osborne, and T. A. A. Adcock. 2019. Spatiotemporal prediction of tidal currents using Gaussian processes. Journal of Geophysical Research Oceans 124 (4):2697–715. doi:10.1029/2018JC014471.
  • Shao, Q., G. Hou, W. Li, G. Han, K. Liang, and Y. Bai. 2021. Ocean reanalysis data‐driven deep learning forecast for sea surface multivariate in the South China Sea. Earth and Space Science 8 (7):e2020EA001558. doi:10.1029/2020EA001558.
  • Shen, Y. T., J. W. Lai, L. G. Leu, Y. C. Lu, J. M. Chen, H. J. Shao, H. W. Chen, K. T. Chang, C. T. Terng, Y. C. Chang, et al. 2019. Applications of ocean currents data from high-frequency radars and current profilers to search and rescue missions around Taiwan. Journal of Operational Oceanography 12(sup2):S126–S36. doi:10.1080/1755876X.2018.1541538.
  • Sinha, A., and R. Abernathey. 2021. Estimating ocean surface currents with machine learning. Frontiers in Marine Science 8:672477. doi:10.3389/fmars.2021.672477.
  • Tamtare, T., D. Dumont, and C. Chavanne. 2021. Extrapolating Eulerian ocean currents for improving surface drift forecasts. Journal of Operational Oceanography 14:71–85. doi:10.1080/1755876X.2019.1661564.
  • Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Jones, N. Aidan, L. Aidan, and I. Polosukhin. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30:5998–6008.
  • Wahl, T., I. D. Haigh, P. L. Woodworth, F. Albrecht, D. Dillingh, J. Jensen, R. J. Nicholls, R. Weisse, and G. Woppelmann. 2013. Observed mean sea level changes around the North sea coastline from 1800 to present. Earth Science Review 124:51–67. doi:10.1016/j.earscirev.2013.05.003.
  • Wang, H., P. Cao, J. Wang, and O. R. Zaiane. 2022, June. Uctransnet: Rethinking the skip connections in u-net from a channel-wise perspective with transformer. Proceedings of the AAAI Conference on Artificial Intelligence 36(3):2441–49. doi:10.1609/aaai.v36i3.20144.
  • Wen, J., J. Yang, and T. Wang. 2021. Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm. IEEE Transactions on Vehicular Technology 70:8529–44. doi:10.1109/TVT.2021.3097203.
  • Wu, Z., Y. Gao, L. Li, J. Xue, and Y. Li. 2019. Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold. Connection Science 31 (2):169–84. doi:10.1080/09540091.2018.1510902.
  • Wu, H., Y. Liang, and X. Z. Gao. 2023. Left-right brain interaction inspired bionic deep network for forecasting significant wave. Energy 278:127995. doi:10.1016/j.energy.2023.127995.
  • Wu, H., Y. Liang, X. Z. Gao, P. Du, and S. P. Li. 2023. Human-cognition-inspired deep model with its application to ocean wave height forecasting. Expert Systems with Applications 230:120606. doi:10.1016/j.eswa.2023.120606.
  • Xie, C., P. Chen, T. Man, and J. Dong. 2023. Stcanet: Spatiotemporal coupled attention network for ocean surface Current prediction. Journal of Ocean University of China 22:441–51. doi:10.1007/s11802-023-5269-2.
  • Yang, S., X. Zhang, Y. Chen, Y. Jiang, Q. Feng, L. Pu, and F. Sun. 2023. UcUNet: A lightweight and precise medical image segmentation network based on efficient large kernel U-shaped convolutional module design[J. Knowledge-Based Systems 278:110868. doi:10.1016/j.knosys.2023.110868.
  • Yin, J., and N. Wang. 2021. Predictive trajectory tracking control of autonomous underwater vehicles based on variable fuzzy predictor. International Journal of Fuzzy Systems 23 (6):1809–22. doi:10.1007/s40815-020-00898-7.
  • Yu, Y., S. Chen, and H. Wei. 2023. Modified UNet with attention gate and dense skip connection for flow field information prediction with porous media. Flow Measurement and Instrumentation 89:102300. doi:10.1016/j.flowmeasinst.2022.102300.
  • Yu, W., J. Gonzalez, and X. Li. 2021. Fast training of deep LSTM networks with guaranteed stability for nonlinear system modelling. Neurocomputing 422:85–94. doi:10.1016/j.neucom.2020.09.030.
  • Zhang, Z., E. V. Stanev, and S. Grayek. 2020. Reconstruction of the basin-wide sea-level variability in the North sea using coastal data and generative adversarial networks. Journal of Geophysical Research Oceans 125:e2020JC016402. doi:10.1029/2020JC016402.