701
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2325302 | Received 10 Oct 2023, Accepted 14 Feb 2024, Published online: 27 Mar 2024

References

  • Agatz, N., Y. Fan, and D. Stam. 2021. The impact of green labels on time slot choice and operational sustainability. Production and Operations Management 30 (7):2285–33. doi:10.1111/poms.13368.
  • Amiri, A., H. Zolfagharinia, and S. Hassanzadeh Amin. 2023. A robust multi-objective routing problem for heavy-duty electric trucks with uncertain energy consumption. Computers & Industrial Engineering 178:109108. doi:10.1016/j.cie.2023.109108.
  • Belhaiza, S., P. Hansen, and G. Laporte. 2014. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Computers & Operations Research 52:269–81. doi: 10.1016/j.cor.2013.08.010.
  • Belhaiza, S., R. M’Hallah, G. Ben Brahim, and G. Laporte. 2019. Three multi-start data-driven evolutionary heuristics for the vehicle routing problem with multiple time windows. Journal of Heuristics 25 (3):485–515. doi:10.1007/s10732-019-09412-1.
  • Bell, W. J., L. M. Dalberto, M. L. Fisher, A. J. Greenfield, R. Jaikumar, P. Kedia, R. G. Mack, and P. J. Prutzman. 1983. Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces 13 (6):4–23. doi:10.1287/inte.13.6.4.
  • Beume, N., B. Naujoks, and M. Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181 (3):1653–69. doi:10.1016/j.ejor.2006.08.008.
  • Braekers, K., K. Ramaekers, and I. Van Nieuwenhuyse. 2016. The vehicle routing problem: State of the art classifi and review. Computers & Industrial Engineering 99:300–13. doi:10.1016/j.cie.2015.12.007.
  • Bräysy, O., and M. Gendreau. 2005. Vehicle routing problem with time windows, part II: Metaheuristics. Transportation Science 39 (1):119–39. doi:10.1287/trsc.1030.0057.
  • Brian, K., J. Larsen, O. B. Madsen, and M. M. Solomon. 2005. Vehicle routing problem with time windows. Boston, USA: Springer.
  • Campbell, A. M., and M. Savelsbergh. 2006. Incentive schemes for attended home delivery services. Transportation Science 40 (3):327–41. doi:10.1287/trsc.1050.0136.
  • Cao, J., X. Chen, R. Qiu, and S. Hou. 2021. Electric vehicle industry sustainable development with a stakeholder engagement system. Technology in Society 67:101771. doi:10.1016/j.techsoc.2021.101771.
  • Chen, W., D. Zhang, T. Van Woensel, G. Xu, and J. Guo. 2023. Green vehicle routing using mixed fleets for cold chain distribution. Expert Systems with Applications 233:120979. doi:10.1016/j.eswa.2023.120979.
  • Cunneen, M., M. Mullins, and F. Murphy. 2019. Autonomous vehicles and embedded artificial intelligence: The challenges of framing machine driving decisions. Applied Artificial Intelligence 33 (8):706–31. doi:10.1080/08839514.2019.1600301.
  • Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan. 2000. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Parallel Problem Solving from Nature PPSN VI: 6th International Conference; Paris, France, September 18–20, 2000 Proceedings 6, 849–58. Springer.
  • Deb, K., and H. Jain. 2013. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18 (4):577–601. doi:10.1109/TEVC.2013.2281535.
  • Desrochers, M., J. Desrosiers, and M. Solomon. 1992. A new optimization algorithm for the vehicle routing problem with time windows. Operations Research 40 (2):342–54. doi:10.1287/opre.40.2.342.
  • Diwekar, U. M. 2020. Introduction to applied optimization, vol. 22. Illinois, USA: Springer Nature.
  • Dubey, N., and A. Tanksale. 2023. A multi-depot vehicle routing problem with time windows, split pickup and split delivery for surplus food recovery and redistribution. Expert Systems with Applications 232 (December 1, 2023):120807. doi: 10.1016/j.eswa.2023.120807.
  • Elgharably, N., S. Easa, A. Nassef, and A. El Damatty. 2023. Stochastic multi-objective vehicle routing Model in green environment with customer satisfaction. IEEE Transactions on Intelligent Transportation Systems 24 (1):1337–55. doi:10.1109/TITS.2022.3156685.
  • Emmerich, M. T., and A. H. Deutz. 2018. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing 17 (3):585–609. doi:10.1007/s11047-018-9685-y.
  • Emmerich, M. T., B.Gülmez, and Y. Fan. 2023. Multi-objective Green Delivery Routing with Flexible Time Windows: Minimizing Fossile Fuel Consumption versus Maximizing Quality of Service, CM3 – TRANSPORT 2023, Jyvaskyla, Finland, 15-17 May 2023, 39–40.
  • Favaretto, D., E. Moretti, and P. Pellegrini. 2007. Ant colony system for a VRP with multiple time windows and multiple visits. Journal of Interdisciplinary Mathematics 10 (2):263–84. doi:10.1080/09720502.2007.10700491.
  • Frey, C. M. M., A. Jungwirth, M. Frey, and R. Kolisch. 2023. The vehicle routing problem with time windows and flexible delivery locations. European Journal of Operational Research 308 (August 1, 2023):1142–59. doi:10.1016/j.ejor.2022.11.029.
  • Grubler, A., C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D. L. McCollum, N. D. Rao, K. Riahi, J. Rogelj, S. De Stercke, et al. 2018. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy 3(6):515–27. doi: 10.1038/s41560-018-0172-6.
  • Gupta, P., K. Govindan, M. Kumar Mehlawat, and A. Khaitan. 2022. Multiobjective capacitated green vehicle routing problem with fuzzy timedistances and demands split into bags. International Journal of Production Research 60 (8):2369–85. doi:10.1080/00207543.2021.1888392.
  • He, Z., M. Zhang, Q. Chen, S. Chen, and N. Pan. 2023. Optimization of heterogeneous vehicle logistics scheduling with multi-objectives and multi-centers. Scientific Reports 13 (August 29, 2023):14169. doi:10.1038/s41598-023-41450-5.
  • Hiermann, G., R. F. Hartl, J. Puchinger, and T. Vidal. 2019. Routing a mix of conventional, plug-in hybrid, and electric vehicles. European Journal of Operational Research 272 (1):235–48. doi:10.1016/j.ejor.2018.06.025.
  • Hong, S.-C., and Y.-B. Park. 1999. A heuristic for bi-objective vehicle routing with time window constraints. International Journal of Production Economics 62 (3):249–58. doi:10.1016/S0925-5273(98)00250-3.
  • Hoogeboom, M., W. Dullaert, D. Lai, and D. Vigo. 2020. Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows. Transportation Science 54 (2):400–16. doi:10.1287/trsc.2019.0912.
  • Hou, B., K. Zhang, Z. Gong, Q. Li, J. Zhou, J. Zhang, and A. de La Fortelle. 2023. SoC-VRP: A deep-reinforcement-learning-based vehicle route planning mechanism for service-oriented cooperative ITS. Electronics 12 (20):4191. doi:10.3390/electronics12204191.
  • Huang, C.-J., K.-W. Hu, H.-M. Chen, H.-H. Liao, H. Wen Tsai, and S.-Y. Chien. 2016. An intelligent energy management mechanism for electric vehicles. Applied Artificial Intelligence 30 (2):125–52. doi:10.1080/08839514.2016.1138777.
  • Jabir, E., V. V. Panicker, and R. Sridharan. 2015. Multi-objective optimization model for a green vehicle routing problem. Procedia-Social and Behavioral Sciences 189:33–39. doi:10.1016/j.sbspro.2015.03.189.
  • Jain, H., and K. Deb. 2013. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation 18 (4):602–22. doi:10.1109/TEVC.2013.2281534.
  • Jozefowiez, N., F. Semet, and E.-G. Talbi. 2008. Multi-objective vehicle routing problems. European Journal of Operational Research 189 (2):293–309. doi:10.1016/j.ejor.2007.05.055.
  • Knowles, J., and D. Corne. 1999. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 1, Washington, DC, USA, 06-09 July 1999, 98–105. IEEE.
  • Konstantakopoulos, G. D., S. P. Gayialis, and E. P. Kechagias. 2020. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Operational Research 1–30. doi:10.1007/s12351-020-00600-7.
  • Kuo, R. J., M. Fernanda Luthfiansyah, N. Aini Masruroh, and F. Eva Zulvia. 2023. Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows. Expert Systems with Applications 225 (September 1, 2023):120009. doi: 10.1016/j.eswa.2023.120009.
  • Laporte, G. 1992. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59 (3):345–58. doi:10.1016/0377-2217(92)90192-C.
  • Lian, Y., F. Lucas, and K. Sörensen. 2023. The electric on-demand bus routing problem with partial charging and nonlinear function. Transportation Research Part C: Emerging Technologies 157:104368. trc.2023.104368. doi: 10.1016/j.trc.2023.104368.
  • Lin, C., K. Lun Choy, G. T. Ho, S. Ho Chung, and H. Y. Lam. 2014. Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications 41 (4):1118–38. doi:10.1016/j.eswa.2013.07.107.
  • Li, J., H. Qin, R. Baldacci, and W. Zhu. 2020. Branch-and-price-and- cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows. Transportation Research Part E: Logistics & Transportation Review 140:101955. doi:10.1016/j.tre.2020.101955.
  • Masmoudi, M. A., L. C. Coelho, and E. Demir. 2022. Plug-in hybrid electric refuse vehicle routing problem for waste collection. Transportation Research Part E: Logistics & Transportation Review 166:102875. doi:10.1016/j.tre.2022.102875.
  • Moradi, N., İ. Sadati, and B. Çatay. 2023. Last mile delivery routing problem using autonomous electric vehicles. Computers & Industrial Engineering 184:109552. doi:10.1016/j.cie.2023.109552.
  • Muñoz-Villamizar, A., J. C. Velazquez-Martínez, and S. Caballero-Caballero. 2024. A large-scale last-mile consolidation model for e-commerce home delivery. Expert Systems with Applications 235 (January 1, 2024):121200. doi:10.1016/j.eswa.2023.121200.
  • Ombuki, B., B. J. Ross, and F. Hanshar. 2006. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence 24 (1):17–30. doi:10.1007/s10489-006-6926-z.
  • Pesant, G., M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. 1999. On the flexibility of constraint programming models: From single to multiple time windows for the traveling salesman problem. European Journal of Operational Research 117 (2):253–63. doi:10.1016/S0377-2217(98)00248-3.
  • Praxedes, R., T. Bulhões, A. Subramanian, and E. Uchoa. 2024. A unified exact approach for a broad class of vehicle routing problems with simultaneous pickup and delivery. Computers & Operations Research 162 (February 1, 2024):106467. doi:10.1016/j.cor.2023.106467.
  • Ransikarbum, K., C. Chaiyaphan, M. Sainakham, and A. Apichottanakul. 2023. “Model and analysis of delivery route in the healthcare cold chain network using minimax vehicle routing problem with time window (VRPTW). Proceedings of the 2023 5th International Conference on Management Science and Industrial Engineering, 333–41. MSIE ‘23. New York, NY, USA: Association for Computing Machinery, August 22, 2023. doi:10.1145/3603955.3603977.
  • Ransikarbum, K., N. Wattanasaeng, and S. Chalil Madathil. 2023. Analysis of multi-objective vehicle routing problem with flexible time windows: The implication for open innovation dynamics. Journal of Open Innovation: Technology, Market, and Complexity 9 (1):100024. (March 1, 2023). doi:10.1016/j.joitmc.2023.100024.
  • Razmjoo, A., A. Ghazanfari, M. Jahangiri, E. Franklin, M. Denai, M. Marzband, D. Astiaso Garcia, and A. Maheri. 2022. A comprehensive study on the expansion of electric vehicles in Europe. Applied Sciences 12 (22):11656. doi:10.3390/app122211656.
  • Schaap, H., M. Schiffer, M. Schneider, and G. Walther. 2022. A large neighborhood search for the vehicle routing problem with multiple time windows. Transportation Science 56 (5):1369–92. doi:10.1287/trsc.2021.1120.
  • Schneider, M., A. Stenger, and D. Goeke. 2014. The electric vehicle-routing problem with time windows and recharging stations. Transportation Science 48 (4):500–20. doi:10.1287/trsc.2013.0490.
  • Seyfi, M., M. Alinaghian, E. Ghorbani, B. Çatay, and M. Saeid Sabbagh. 2022. Multi-mode hybrid electric vehicle routing problem. Transportation Research Part E: Logistics & Transportation Review 166:102882. doi:10.1016/j.tre.2022.102882.
  • Srinivas, N., and K. Deb. 1994. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2 (3):221–48. doi:10.1162/evco.1994.2.3.221.
  • Tan, F., Z.-Y. Chai, and Y.-L. Li. 2023. Multi-objective evolutionary algorithm for vehicle routing problem with time window under uncertainty. Evolutionary Intelligence 16 (2):493–508. doi:10.1007/s12065-021-00672-0.
  • Taniguchi, E., R. G. Thompson, and A. G. Qureshi. 2020. Modelling city logistics using recent innovative technologies. Transportation Research Procedia 46:3–12. doi:10.1016/j.trpro.2020.03.157.
  • Toth, P., and D. Vigo. 2002. The vehicle routing problem. Philadelphia, USA: SIAM.
  • Van, E., C. L. Jens, J. Beliën, and S. De Jaeger. 2024. Solving a real-life multi-period trailer-truck waste collection problem with time windows. Expert Systems with Applications 237:121301. doi:10.1016/j.eswa.2023.121301.
  • Vincent, F. Y., A. A. N. Perwira Redi, Y. Agustina Hidayat, and O. Jimat Wibowo. 2017. A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing 53:119–32. doi: 10.1016/j.asoc.2016.12.027.
  • Waßmuth, K., C. Köhler, N. Agatz, and M. Fleischmann. 2023. Demand management for attended home delivery—A literature review. European Journal of Operational Research 311 (3):801–15. doi:10.1287/trsc.1050.0136.
  • Wu, Y., S. Wang, L. Zhen, and G. Laporte. 2023. Integrating operations research into green logistics: A review. Frontiers of Engineering Management 10 (3):517–33. doi:10.1007/s42524-023-0265-1.
  • Wu, D., and C. Wu. 2022. Research on the time-dependent split delivery green vehicle routing problem for fresh agricultural products with multiple time windows. Agriculture 12 (6):793. doi:10.3390/agriculture12060793.
  • Yin, N. 2023. Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation. IEEE Transactions on Intelligent Transportation Systems 24 (November):13161–70. doi:10.1109/TITS.2022.3193679.
  • Yusuf, I., M. Sapiyan Baba, and N. Iksan. 2014. Applied genetic algorithm for solving rich VRP. Applied Artificial Intelligence 28 (10):957–91. doi:10.1080/08839514.2014.927680.
  • Zacharia, P., C. Drosos, D. Piromalis, and M. Papoutsidakis. 2021. The vehicle routing problem with fuzzy payloads considering fuel consumption. Applied Artificial Intelligence 35 (15):1755–76. doi:10.1080/08839514.2021.1992138.
  • Zahedi, F., H. Kia, and M. Khalilzadeh. 2023. A hybrid metaheuristic approach for solving a bi-objective capacitated electric vehicle routing problem with time windows and partial recharging. Journal of Advances in Management Research 20 (4):695–729. doi:10.1108/JAMR-01-2023-0007.
  • Zhang, Q., and H. Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11 (6):712–31. doi:10.1109/TEVC.2007.892759.
  • Zheng, X., F. Gao, and X. Tong. 2023. Research on green vehicle path planning of AGVs with simultaneous pickup and delivery in intelligent workshop. Symmetry 15(8):1505. Accessed December 7, 2023. doi: 10.3390/sym15081505.
  • Zitzler, E., and L. Thiele. 1998. Multiobjective optimization using evolutionary algorithms—a comparative case study. International conference on parallel problem solving from nature, 292–301. Springer. 10.1007/BFb00568.