195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Human-In-One-Loop Active Domain Adaptation Framework for Digit Recognition

ORCID Icon, , , &
Article: 2349410 | Received 26 Mar 2023, Accepted 18 Apr 2024, Published online: 11 May 2024

References

  • Anwar, S., B. Mehrban, M. Ali, F. Hussain, and Z. Halim. 2021. A novel framework for generating handwritten datasets. Multimedia Tools and Applications 80 (6):9657–29. doi:10.1007/s11042-020-09545-7
  • Borgwardt, K. M., A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola. 2006. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22 (14):e49–57. doi:10.1093/bioinformatics/btl242
  • Bousmalis, K., N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, 3722–31.
  • Bousmalis, K., G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. 2016. Domain separation networks, Advances in Neural Information Processing Systems, Barcelona, Spain, 29.
  • Budd, S., E. C. Robinson, and B. Kainz. 2021. A survey on active learning and human-in- the-loop deep learning for medical image analysis. Medical Image Analysis 71:102062. doi:10.1016/j.media.2021.102062
  • Cao, Z., Y. Zhou, A. Yang, and S. Peng. 2021. Deep transfer learning mechanism for fine- grained cross-domain sentiment classification. Connection Science 33 (4):911–28. doi:10.1080/09540091.2021.1912711
  • Cheng, Z., S. Wang, D. Yang, J. Qi, M. Xiao, and C. Yan. 2024. Deep joint semantic adaptation network for multi-source unsupervised domain adaptation. Pattern Recognition 151:110409. doi:10.1016/j.patcog.2024.110409
  • Fu, Y., X. Zhu, and B. Li. 2013. A survey on instance selection for active learning. Knowledge and Information Systems 35 (2):249–83. doi:10.1007/s10115-012-0507-8
  • Ganin, Y., E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and V. Lempitsky. 2016. Domain-adversarial training of neural networks. The Journal of Machine Learning Research 17 (1):2096–2030.
  • Ge, C., R. Huang, M. Xie, Z. Lai, S. Song, S. Li, and G. Huang. 2023. Domain adaptation via prompt learning. IEEE Transactions on Neural Networks and Learning Systems.
  • Ghifary, M., W. B. Kleijn, M. Zhang, and D. Balduzzi. 2015. Domain generalization for object recognition with multi-task autoencoders. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2551–59.
  • Ghifary, M., W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. 2016. Deep reconstruction- classification networks for unsupervised domain adaptation. European Conference on Computer Vision, Amsterdam, The Netherlands, 597–613.
  • Gómez-Carmona, O., D. Casado-Mansilla, D. López-de Ipiña, and J. García-Zubia. 2024. Human-in-the-loop machine learning: Reconceptualizing the role of the user in interactive approaches. Internet of Things 25:101048. doi:10.1016/j.iot.2023.101048
  • Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2020. Generative adversarial networks. Communications of the ACM 63 (11):139–44. doi:10.1145/3422622
  • Kendall, A., and Y. Gal. 2017. What uncertainties do we need in bayesian deep learning for computer vision?. Advances in Neural Information Processing Systems, Long Beach, California, USA, 30.
  • Konyushkova, K., R. Sznitman, and P. Fua. 2017. Learning active learning from data, Advances in Neural Information Processing Systems, Long Beach, California, USA, 30.
  • Li, J., G. Li, and Y. Yu. 2024. Inter-domain mixup for semi-supervised domain adaptation. Pattern Recognit 146:110023. Retrieved from. doi:10.1016/j.patcog.2023.110023
  • Long, M., H. Zhu, J. Wang, and M. I. Jordan. 2017. Deep transfer learning with joint adaptation networks. International Conference on Machine Learning, Sydney, Australia, 2208–17.
  • Lore, K. G., A. Akintayo, and S. Sarkar. 2017. Llnet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognition 61:650–62. doi:10.1016/j.patcog.2016.06.008
  • Ma, X., J. Gao, and C. Xu. 2021. Active universal domain adaptation. Proceedings of the IEEE/cvf International Conference on Computer Vision, Montreal, Quebec, Canada, 8968–77.
  • Mayer, C., and R. Timofte. 2020. Adversarial sampling for active learning. Proceedings of the IEEE/cvf Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 3071–79.
  • Prabhu, V., A. Chandrasekaran, K. Saenko, and J. Hoffman. 2021. Active domain adaptation via clustering uncertainty-weighted embeddings. Proceedings of the IEEE/cvf International Conference on Computer Vision, Montreal, Quebec, Canada, 8505–14.
  • Rangwani, H., A. Jain, S. K. Aithal, and R. V. Babu, 2021. S3vaada: Submodular subset selection for virtual adversarial active domain adaptation. Proceedings of the IEEE/cvf International Conference on Computer Vision, Montreal, Quebec, Canada, 7516–25.
  • Ren, P., Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, and X. Wang, X. Wang. 2021. A survey of deep active learning. ACM Computing Surveys (CSUR) 54 (9):1–40. doi:10.1145/3472291
  • Saito, K., D. Kim, S. Sclaroff, T. Darrell, and K. Saenko. 2019. Semi-supervised domain adaptation via minimax entropy. Proceedings of the ieee/cvf international conference on computer vision, Seoul, South Korea, 8050–58.
  • Saito, K., K. Watanabe, Y. Ushiku, and T. Harada. 2018. Maximum classifier discrepancy for unsupervised domain adaptation. Proceedings of the ieee conference on computer vision and pattern recognition, Salt Lake City, Utah, USA, 3723–32.
  • Simonyan, K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv: 14091556.
  • Su, J.-C., Y.-H. Tsai, K. Sohn, B. Liu, S. Maji, and M. Chandraker. 2020. Active adversarial domain adaptation. Proceedings of the ieee/cvf winter conference on applications of computer vision, Snowmass, CO, USA, 739–48.
  • Tan, F., and G. Zheng. 2023. Active learning for deep object detection by fully exploiting unlabeled data. Connection Science 35(1): doi:10.1080/09540091.2023.2195596.
  • Tzeng, E., J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. 2014. Deep domain confusion: Maximizing for domain invariance. arXiv Preprint arXiv: 14123474.
  • Wang, M., and W. Deng. 2018. Deep visual domain adaptation: A survey. Neurocomputing 312:135–53. doi:10.1016/j.neucom.2018.05.083
  • Wang, X., L. Li, W. Ye, M. Long, and J. Wang. 2019. Transferable attention for domain adaptation. Proceedings of the aaai conference on artificial intelligence, Honolulu, Hawaii, USA, Vol. 33, 5345–52.
  • Wang, Y., Z. Yu, S. Liu, Z. Zhou, and B. Guo. 2023. Genie in the model: Automatic generation of human-in-the-loop deep neural networks for mobile applications. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7 (1):1–29. doi:10.1145/3580815
  • Wu, J., Z. Huang, Z. Hu, and C. Lv. 2023. Toward human-in-the-loop ai: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving. Engineering 21:75–91. doi:10.1016/j.eng.2022.05.017
  • Wu, X., L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He. 2022. A survey of human-in-the-loop for machine learning. Future Generation Computer Systems 135:364–81. doi:10.1016/j.future.2022.05.014
  • Xiu, H., J. He, X. Zhang, L. Wang, and Y. Qi. 2022. Hrc-mcnns: A hybrid regression and classification multibranch cnns for automatic meter reading with smart shell. IEEE Internet of Things Journal 9 (24):25752–66. doi:10.1109/JIOT.2022.3197930
  • Yan, H., Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo. 2017. Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. Proceedings of the ieee conference on computer vision and pattern recognition, Honolulu, Hawaii, USA, 2272–81.
  • Yosinski, J., J. Clune, Y. Bengio, and H. Lipson. 2014. How transferable are features in deep neural networks?, Advances in Neural Information Processing Systems, Montreal, Quebec, Canada, 27.
  • Zhang, H., B. Dong, Q. Zheng, and B. Feng. 2022. Research on fast text recognition method for financial ticket image. Applied Intelligence 52 (15):18156–66. doi:10.1007/s10489-022-03467-7
  • Zhang, W., and D. Wu. 2020. Discriminative joint probability maximum mean discrepancy (djp-mmd) for domain adaptation. 2020 international joint conference on neural networks (ijcnn), Glasgow, United Kingdom, 1–8.
  • Zhao, S., X. Yue, S. Zhang, B. Li, H. Zhao, B. Wu, R. Krishna, J. E. Gonzalez, A. L. Sangiovanni-Vincentelli, S. A. Seshia, et al. 2020. A review of single-source deep unsupervised visual domain adaptation. IEEE Transactions on Neural Networks and Learning Systems 33 (2):473–93. doi:10.1109/TNNLS.2020.3028503
  • Zhou, F., G. Wang, K. Zhang, S. Liu, and T. Zhong. 2023. Semi-supervised anomaly detection via neural process, IEEE Transactions on Knowledge and Data Engineering.
  • Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the ieee international conference on computer vision, Venice, Italy, 2223–32.