198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deep Recurrent Reinforcement Learning for Intercept Guidance Law under Partial Observability

, , &
Article: 2355023 | Received 15 Jul 2023, Accepted 30 Apr 2024, Published online: 16 May 2024

References

  • Battistini, S., and T. Shima. 2014. Differential games missile guidance with bearings-only measurements. IEEE Transactions on Aerospace and Electronic Systems 50 (4):2906–19. doi:10.1109/TAES.2014.130366
  • Chansuparp, M., and K. Jitkajornwanich. 2022. A novel augmentative backward reward function with deep reinforcement learning for autonomous UAV navigation. Applied Artificial Intelligence 36 (1):1. doi:10.1080/08839514.2022.2084473
  • Cho, K., B. V. Merrienboer, C. Gulcehre, Bahdanau D, Bougares F, Schwenk H, and Bengio Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 1724–1734, Association for Computational Linguistics. doi:10.3115/v1/D14-1179
  • Fujimoto, S., H. V. Hoof, and D. Meger. 2018. Addressing function approximation error in actor-critic methods. International Conference on Machine Learning, Stockholm, Sweden, 1587–1596. doi:10.48550/arXiv.1802.09477
  • Gaudet, B., and R. Furfaro. 2012. Missile homing-phase guidance law design using reinforcement learning. AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota. doi:10.2514/6.2012-4470
  • Gaudet, B., R. Furfaro, and R. Linares. 2020. Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerospace Science and Technology 99:105746. doi:10.1016/j.ast.2020.105746
  • Ha, I. J., J. S. Hur, M. S. Ko, and T. L. Song. 1990. Performance analysis of PNG laws for randomly maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems 26 (5):713–21. doi:10.1109/7.102706
  • Hantous, K., L. Rejeb, and R. Hellali. 2022. Detecting physiological needs using deep inverse reinforcement learning. Applied Artificial Intelligence 36 (1):1. doi:10.1080/08839514.2021.2022340
  • Hasselt, H. V., A. Guez, and D. Silver. 2016. Deep reinforcement learning with double Q-learning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 30 (1):2094–100. doi:10.1609/aaai.v30i1.10295
  • Hausknecht, M., and P. Stone. 2015. Deep recurrent Q-learning for partially observable MDPs. AAAI Fall Symposium Series. doi:10.48550/arXiv.1507.06527
  • He, X., Z. Chen, F. Jia, and M. Wu. 2020. Guidance law based on zero effort miss and Q-learning algorithm. Seventh Symposium on Novel Photoelectronic Detection Technology and Application. doi:10.1117/12.2586409
  • He, S., H. Shin, and A. Tsourdos. 2021. Computational missile guidance: A deep reinforcement learning approach. Journal of Aerospace Information Systems 18 (8):1–12. doi:10.2514/1.I010970
  • Hong, D., M. Kim, and S. Park. 2020. Study on reinforcement learning-based missile guidance law. Applied Sciences 10 (18):6567. doi:10.3390/app10186567
  • Hu, Q., T. Han, and M. Xin. 2019. Sliding-mode impact time guidance law design for various target motions. Journal of Guidance, Control, and Dynamics 42 (1):136–48. doi:10.2514/1.G003620
  • Liang, C., W. Wang, Z. Liu, C. Lai, and B. Zhou. 2019. Learning to guide: Guidance law based on deep meta-learning and model predictive path integral control. Institute of Electrical and Electronics Engineers Access 7:47353–65. doi:10.1109/ACCESS.2019.2909579
  • Lillicrap, T. P., J. J. Hunt, A. Pritzel, Heess N., Erez T., Tassa Y., Silver D., and Wierstra D. 2015. Continuous control with deep reinforcement learning. Computer Science 8 (6):A187. doi:10.48550/arXiv.1509.02971
  • Liu, Z., J. Wang, S. He, H.-S. Shin, and A. Tsourdos. 2021. Learning prediction-correction guidance for impact time control. Aerospace Science and Technology 119:107187. doi:10.1016/j.ast.2021.107187
  • Li, W., Y. Zhu, and D. Zhao. 2022. Missile guidance with assisted deep reinforcement learning for head-on interception of maneuvering target. Complex & Intelligent Systems 8 (2):1205–16. doi:10.1007/S40747-021-00577-6
  • Luo, Y., and D. Zhang. 2023. Wireless network design optimization for computer teaching with deep reinforcement learning application. Applied Artificial Intelligence 37 (1):1. doi:10.1080/08839514.2023.2218169
  • Peng, C., H. Zhang, Y. He, and J. Ma. 2022. State-following-kernel based online reinforcement learning guidance law against maneuvering target. IEEE Transactions on Aerospace and Electronic Systems 58 (6):5784–97. doi:10.1109/TAES.2022.3178770
  • Shalumov, V. 2020. Cooperative online guide-launch-guide policy in a target-missile-defender engagement using deep reinforcement learning. Aerospace Science and Technology 104:105996. doi:10.1016/j.ast.2020.105996
  • Sutton, R., and A. Barto. 1998. Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
  • Tan, J. 2023. A method to plan the path of a robot utilizing deep reinforcement learning and multi-sensory information fusion. Applied Artificial Intelligence 37 (1):1. doi:10.1080/08839514.2023.2224996
  • Volodymyr, M., K. Koray, S. David, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518 (7540):529–33. doi:10.1038/nature14236
  • Wang, N., Y. Gao, and X. Zhang. 2021. Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Transactions on Neural Networks and Learning Systems 32 (12):5456–67. doi:10.1109/TNNLS.2021.3056444
  • Wang, N., Y. Gao, H. Zhao, and C. K. Ahn. 2021. Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Transactions on Neural Networks and Learning Systems 32 (7):3034–45. doi:10.1109/TNNLS.2020.3009214
  • Wu, M., X. He, Z. Qiu, and Z. Chen. 2022. Guidance law of interceptors against a high-speed maneuvering target based on deep Q-Network. Transactions of the Institute of Measurement and Control 44 (7):1373–87. doi:10.1177/01423312211052742
  • Yuan, P. J., and S. C. Hsu. 1995. Solutions of generalized proportional navigation with maneuvering and nonmaneuvering targets. IEEE Transactions on Aerospace and Electronic Systems 31 (1):469–74. doi:10.1109/7.366329
  • Zarchan, P. 2012. Tactical and strategic missile guidance. 6th ed. American Institute of Aeronautics and Astronautics. doi:10.2514/4.868948
  • Zhang, Q., B. Ao, and Q. Zhang. 2020. Reinforcement learning guidance law of Q-learning. Systems Engineering & Electronics 42 (2):414–19. doi:10.3969/j.issn.1001-506X.2020.02.21
  • Zhang, X., G. Liu, C. Yang, and W. Jiang. 2018. Research on air combat maneuver decision-making method based on reinforcement learning. Electronics 7 (11):279. doi:10.3390/electronics7110279
  • Zhang, R., J. Wang, H. Li, Z. Li, and Z. Ding. 2018. Robust finite-time guidance against maneuverable targets with unpredictable evasive strategies. Aerospace Science and Technology 77:534–44. doi:10.1016/j.ast.2018.04.004
  • Zhou, Z., and H. Xu. 2022. Decentralized optimal large scale multi-player pursuit-evasion strategies: A mean field game approach with reinforcement learning. Neurocomputing 484:46–58. doi:10.1016/j.neucom.2021.01.141