154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-Based in silico Evaluation of the Biosafety and Probiotic Traits of Limosilactobacillus fermentum J23 Isolated from Artisanal Mexican Cheese

, , , , , , & show all

References

  • Alayande, K. A., O. A. Aiyegoro, T. M. Nengwekhulu, L. Katata-Seru, C. N. Ateba, and Y.-F. Chang. 2020. Integrated genome-based probiotic relevance and safety evaluation of lactobacillus reuteri PNW1. PLoS One 15 (7):e0235873. doi:10.1371/journal.pone.0235873.
  • Alcock, B. P., A. R. Raphenya, T. T. Y. Lau, K. K. Tsang, M. Bouchard, A. Edalatmand, W. Huynh, A.L.V. Nguyen, A.A. Cheng, S. Liu, et al. 2020. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48 (D1):D517–D525. doi:10.1093/nar/gkz935.
  • Alizadeh, M., M. Jalal, K. Hamed, A. Saber, S. Kheirouri, F. Pourteymour Fard Tabrizi, and N. Kamari. 2020. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res. 13:451–463. doi:10.2147/JIR.S262132.
  • Andrews, S. 2019. FastQC a quality control tool for high throughput sequence data. Accessed June 30, 2022. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  • Arndt, D., J. R. Grant, A. Marcu, T. Sajed, A. Pon, Y. Liang, and D. S. Wishart. 2016. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44 (W1):W16–W21. doi:10.1093/nar/gkw387.
  • Aziz, R. K., D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, K. Formsma, S. Gerdes, E.M. Glass, M. Kubal, et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 9(1):75. doi:10.1186/1471-2164-9-75.
  • Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. 2012. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5):455–477. doi:10.1089/cmb.2012.0021.
  • Barbieri, F., C. Montanari, F. Gardini, and G. Tabanelli. 2019. Biogenic amine production by lactic acid bacteria: A review. Foods 8 (1):17. doi:10.3390/foods8010017.
  • Batool, Z., D. Xu, X. Zhang, X. Li, Y. Li, Z. Chen, B. Li, and L. Li. 2021. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit. Rev. Food Sci. Nutr. 61 (3):395–406. doi:10.1080/10408398.2020.1734532.
  • Benini, S. 2020. Carbohydrate-active enzymes: Structure, activity, and reaction products. Int. J. Mol .Sci. 21 (8):2727. doi:10.3390/ijms21082727.
  • Bertelli, C., M. R. Laird, K. P. Williams, B. Y. Lau, G. Hoad, G. L. Winsor, and F. S. L. Brinkman. 2017. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45 (W1):W30–W35. doi:10.1093/nar/gkx343.
  • Bertelli, C., K. E. Tilley, and F. S. L. Brinkman. 2019. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20 (5):1685–1698. doi:10.1093/bib/bby042.
  • Blin, K., S. Shaw, K. Steinke, R. Villebro, N. Ziemert, S. Y. Lee, M. H. Medema, and T. Weber. 2019. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47 (W1):W81–W87. doi:10.1093/nar/gkz310.
  • Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Brandt, K., M. A. Nethery, S. O’Flaherty, and R. Barrangou. 2020. Genomic characterization of lactobacillus fermentum DSM 20052. BMC Genom 21 (1):328. doi:10.1186/s12864-020-6740-8.
  • Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST + : Architecture and applications. BMC Bioinform. 10 (1):421. doi:10.1186/1471-2105-10-421.
  • Castro‑López, C., C. Pascacio‑Villafán, M. Aluja, H. S. García, A. F. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. forthcoming. Safety assessment of the potential probiotic bacterium Limosilactobacillus fermentum J23 using the Mexican fruit fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a novel in vivo model. Probiotics Antimicrob. Proteins. doi:10.1007/s12602-022-10034-6.
  • Castro-López, C., H. S. García, G. C. G. Martínez-Ávila, A. F. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2021. Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – a probiogenomics review. Trends Food Sci. Technol. 108:148–163. doi:10.1016/j.tifs.2020.12.017.
  • Chatterjee, M., A. C. Pushkaran, A. K. Vasudevan, K. K. N. Menon, R. Biswas, and C. G. Mohan. 2018. Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int. J. Biol. Macromol. 110:598–607. doi:10.1016/j.ijbiomac.2017.10.107.
  • Chen, L., Q. Gu, P. Li, S. Chen, and Y. Li. 2019. Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance. Food Sci. Nutr. 7 (2):844–857. doi:10.1002/fsn3.934.
  • Chokesajjawatee, N., P. Santiyanont, K. Chantarasakha, K. Kocharin, C. Thammarongtham, S. Lertampaiporn, T. Vorapreeda, T. Srisuk, T. Wongsurawat, P. Jenjaroenpun et al. 2020. Safety assessment of a Nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 10(1):10241. doi:10.1038/s41598-020-66857-2.
  • Chun, J., A. Oren, A. Ventosa, H. Christensen, D. R. Arahal, M. S. da Costa, A.P. Rooney, H. Yi, X.W. Xu, S. De Meyer, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68 (1):461–466. doi:10.1099/ijsem.0.002516.
  • Cosentino, S., M. Voldby Larsen, F. Møller Aarestrup, and O. Lund. 2013. PathogenFinder ‒ distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8 (10):e77302. doi:10.1371/journal.pone.0077302.
  • Couvin, D., A. Bernheim, C. Toffano-Nioche, M. Touchon, J. Michalik, B. Néron, E. P. C. Rocha, G. Vergnaud, D. Gautheret, C. Pourcel, et al. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46(W1):W246–W251. doi:10.1093/nar/gky425.
  • Crawley, A. B., E. D. Henriksen, E. Stout, K. Brandt, and R. Barrangou. 2018. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in Lactobacilli. Sci. Rep. 8 (1):11544. doi:10.1038/s41598-018-29746-3.
  • da Silva Filho, A. C., R. T. Raittz, D. Guizelini, C. R. De Pierri, D. W. Augusto, I. C. R. dos Santos-Weiss, and J. N. Marchaukoski. 2018. Comparative analysis of genomic island prediction tools. Front Genet. 9:619. doi:10.3389/fgene.2018.00619.
  • Dabaj, F. K., O. Lasekan, M. Y. A. Manap, and F. H. Ling. 2020. Evaluation of the volatilomic potentials of the Lactobacillus casei 431 and Lactobacillus acidophilus La-5 in fermented milk. CYTA J. Food 18 (1):291–300. doi:10.1080/19476337.2020.1741688.
  • Dos Santos, C. I., C. D. L. Campos, W. R. Nunes-Neto, M. S. Do Carmo, F. A. B. Nogueira, R. M. Ferreira, E. P. S. Costa, L.F. Gonzaga, J.M. Araújo, J.M. Monteiro et al. 2021. Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. J. Fungi 7(10):794. doi:10.3390/jof7100794.
  • Drula, E., M.-L. Garron, S. Dogan, V. Lombard, B. Henrissat, and N. Terrapon. 2022. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 50 (D1):D571–D577. doi:10.1093/nar/gkab1045.
  • Duar, R. M., X. B. Lin, J. Zheng, M. E. Martino, T. Grenier, M. E. Pérez-Muñoz, F. Leulier, M. Gänzle, and J. Walter. 2017. Lifestyles in transition: Evolution and natural history of the genus lactobacillus. FEMS Microbiol. Rev. 41 (S1):S27–S48. doi:10.1093/femsre/fux030.
  • Florensa, A. F., R. S. Kaas, P. T. L. C. Clausen, D. Aytan-Aktug, and F. M. Aarestrup. 2022. ResFinder ‒ an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 8 (1):000748. doi:10.1099/mgen.0.000748.
  • Food and Drug Administration, FDA. 2018. Microorganisms & microbial-derived ingredients used in food (partial list). Last Modified April 1. Accessed July 13, 2023. https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list.
  • Gao, X., J. Kong, H. Zhu, B. Mao, S. Cui, and J. Zhao. 2021. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross‐protection to improve resistance against freeze‐drying. J. Appl. Microbiol. 132 (2):802–821. doi:10.1111/jam.15251.
  • Ghattargi, V. C., M. A. Gaikwad, B. S. Meti, Y. S. Nimonkar, K. Dixit, O. Prakash, Y. S. Shouche, S. P. Pawar, and D. P. Dhotre. 2018. Comparative genome analysis reveals key genetic factors associated with probiotic property in enterococcus faecium strains. BMC. Genom 19 (1):652. doi:10.1186/s12864-018-5043-9.
  • Goel, A., P. M. Halami, and J. P. Tamang. 2020. Genome analysis of lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front. Microbiol. 11:40. doi:10.3389/fmicb.2020.00040.
  • Golubov, A. 2021. Genome instability in bacteria: Causes and consequences. In Genome stability: From virus to human application, ed. I. Kovalchuk and O. Kovalchuk, Vol. 26, 2nd ed., 73–90. Amsterdam: Elsevier B.V. & Academic Press.
  • Gurevich, A., V. Saveliev, N. Vyahhi, and G. Tesler. 2013. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29 (8):1072–1075. doi:10.1093/bioinformatics/btt086.
  • Gutiérrez-Chávez, C., N. Benaud, and B. C. Ferrari. 2021. The ecological roles of microbial lipopeptides: Where are we going? Comput. Struct. Biotechnol. J. 19:1400–1413. doi:10.1016/j.csbj.2021.02.017.
  • Heredia-Castro, P. Y., J. I. Méndez-Romero, A. Hernández-Mendoza, E. Acedo-Félix, A. F. González-Córdova, and B. Vallejo-Cordoba. 2015. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese. J. Dairy Sci. 98 (12):8285–8293. doi:10.3168/jds.2015-10104.
  • Heredia-Castro, P. Y., R. Reyes-Díaz, M. A. Rendón-Rosales, L. M. Beltrán-Barrientos, M. J. Torres-Llanez, M. C. Estrada-Montoya, A. Hernández-Mendoza, A. F. González-Córdova, and B. Vallejo-Cordoba. 2021. Novel bacteriocins produced by Lactobacillus fermentum strains with bacteriostatic effects in milk against selected indicator microorganisms. J. Dairy Sci. 104 (4):4033–4043. doi:10.3168/jds.2020-19531.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. The international scientific association for probiotics and prebiotics consensus on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11(8):506–514. doi:10.1038/nrgastro.2014.66.
  • Hossain, T. L. 2022. Functional genomics of the lactic acid bacterium Limosilactobacillus fermentum LAB-1: Metabolic, probiotic and biotechnological perspectives. Heliyon 8 (11):e11412. doi:10.1016/j.heliyon.2022.e11412.
  • Hsu, H.-Y., Y.-C. Liao, S.-H. Lin, J.-S. Lin, C.-C. Lee, and K. Watanabe. 2022. Safety assessment of Lactiplantibacillus plantarum TWK10 based on whole-genome sequencing, phenotypic, and oral toxicity analysis. Microorganisms 10:784. doi:10.3390/microorganisms10040784.
  • Hymes, J. P., and T. R. Klaenhammer. 2016. Stuck in the middle: Fibronectin-binding proteins in gram-positive bacteria. Front Microbiol. 7:1504. doi:10.3389/fmicb.2016.01504.
  • Jian, Z., L. Zeng, T. Xu, S. Sun, S. Yan, L. Yang, Y. Huang, J. Jia, and T. Dou. 2021. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 61 (12):1049–1070. doi:10.1002/jobm.202100201.
  • Kim, H., Y.-S. Lee, H.-Y. Yu, M. Kwon, K.-K. Kim, G. In, S.-K. Hong, and S.-K. Kim. 2022. Anti-inflammatory effects of Limosilactobacillus fermentum KGC1601 isolated from Panax ginseng and its probiotic characteristics. Foods 11:1707. doi:10.3390/foods11121707.
  • Knutsen, H. K., J. Alexander, L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, L. Edler, B. Grasl‐Kraupp, et al. 2017. Risks for public health related to the presence of furan and methylfurans in food. EFSA. J. 15(10):e05005. doi:10.2903/j.efsa.2017.5005.
  • Kothari, D., S. Patel, and S.-K. Kim. 2019. Probiotic supplements might not be universally-effective and safe: A review. Biomed. Pharmacother. 111:537–547. doi:10.1016/j.biopha.2018.12.104.
  • Kumar, R., T. M. Feltrup, R. V. Kukreja, K. B. Patel, S. Cai, and B. R. Singh. 2019. Evolutionary features in the structure and function of bacterial toxins. Toxins 11 (1):15. doi:10.3390/toxins11010015.
  • Lacerda, D. C., P. C. Trindade da Costa, P. B. Pontes, L. A. Carneiro Dos Santos, J. P. R. Cruz Neto, C. C. Silva Luis, V. P. de Sousa Brito, and J. L. de Brito Alves. 2022. Potential role of Limosilactobacillus fermentum as a probiotic with anti-diabetic properties: A review. World J. Diabetes 13 (9):717–728. doi:10.4239/wjd.v13.i9.717.
  • Lee, B. S., O.-H. Ban, W. Y. Bang, S. A. Chae, S. Oh, C. Park, M. Lee, S.J. Kim, J. Yang, and Y.H. Jung. 2021. Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis. Ann. Microbiol. 71(1):10. doi:10.1186/s13213-021-01622-y.
  • Lehri, B., A. M. Seddon, and A. V. Karlyshev. 2017. Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Stand Genomic. Sci. 12 (1):19. doi:10.1186/s40793-017-0228-4.
  • Lemke, R. A. S., S. M. Olson, K. Morse, S. D. Karlen, A. Higbee, E. T. Beebe, J. Ralph, J. J. Coon, B. G. Fox, and T. J. Donohue. 2020. A bacterial biosynthetic pathway for methylated furan fatty acids. J. Biol. Chem. 295 (29):9786–9801. doi:10.1074/jbc.RA120.013697.
  • Leuschner, R. G. K., T. P. Robinson, M. Hugas, P. S. Cocconcelli, F. Richard-Forget, G. Klein, and M. Richardson. 2010. Qualified presumption of safety (QPS): A generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 21 (9):425–435. doi:10.1016/j.tifs.2010.07.003.
  • Lipszyc, A., M. Szuplewska, and D. Bartosik. 2022. How do transposable elements activate expression of transcriptionally silent antibiotic resistance genes? Int J. Mol. Sci. 23:8063. doi:10.3390/ijms23158063.
  • Liu, B., D. Zheng, Q. Jin, L. Chen, and J. Yang. 2019. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47 (D1):D687–D692. doi:10.1093/nar/gky1080.
  • Liu, D.-M., Y.-Y. Huang, and M.-H. Liang. 2022. Analysis of the probiotic characteristics and adaptability of Lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete genome sequencing and corresponding phenotypes. LWT - Food Sci. Technol. 158:113129. doi:10.1016/j.lwt.2022.113129.
  • Masiá, C., A. Geppel, P. E. Jensen, and P. Buldo. 2021. Effect of lactobacillus rhamnosus on physicochemical properties of fermented plant-based raw materials. Foods 10 (3):573. doi:10.3390/foods10030573.
  • Moriya, Y., M. Itoh, S. Okuda, A. C. Yoshizawa, and M. Kanehisa. 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35:W182–W185. doi:10.1093/nar/gkm321.
  • Naghmouchi, K., Y. Belguesmia, F. Bendali, G. Spano, B. S. Seal, and D. Drider. 2020. Lactobacillus fermentum: A bacterial species with potential for food preservation and biomedical applications. Crit. Rev. Food Sci. Nutr. 60 (20):3387–3399. doi:10.1080/10408398.2019.1688250.
  • Nidhi, S., U. Anand, P. Oleksak, P. Tripathi, J. A. Lal, G. Thomas, K. Kuca, and V. Tripathi. 2021. Novel CRISPR-Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int. J. Mol. Sci. 22 (7):3327. doi:10.3390/ijms22073327.
  • Park, M. R., M. Shin, D. Mun, S. Y. Jeong, D. Y. Jeong, M. Song, G. Ko, T. Unno, Y. Kim, and S. Oh. 2020. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Sci. Rep. 10 (1):21701. doi:10.1038/s41598-020-77587-w.
  • Pei, Z., F. A. Sadiq, X. Han, J. Zhao, H. Zhang, R. P. Ross, W. Lu, W. Chen, and L. A. McCue. 2021. Comprehensive scanning of prophages in Lactobacillus: Distribution, diversity, antibiotic resistance genes, and linkages with CRISPR-Cas systems. mSystems 6 (3):e0121120. doi:10.1128/mSystems.01211-20.
  • Peng, X., A. Ed-Dra, and M. Yue. 2022. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 1:1–19. doi:10.1080/10408398.2022.2156476.
  • Pohanka, M. 2020. D-lactic acid as a metabolite: Toxicology, diagnosis, and detection. Biomed. Res. Int. 2020:3419034. doi:10.1155/2020/3419034.
  • Pradhan, D., R. H. Mallappa, and S. Grover. 2020. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control. 108:106872. doi:10.1016/j.foodcont.2019.106872.
  • Raethong, N., C. Santivarangkna, W. Visessanguan, P. Santiyanont, W. Mhuantong, and N. Chokesajjawatee. 2022. Whole-genome sequence analysis for evaluating the safety and probiotic potential of Lactiplantibacillus pentosus 9D3, a gamma-aminobutyric acid (GABA)-producing strain isolated from Thai pickled weed. Front. Microbiol. 13:969548. doi:10.3389/fmicb.2022.969548.
  • Roux, E., A. Nicolas, F. Valence, G. Siekaniec, V. Chuat, J. Nicolas, Y. Le Loir, and E. Guédon. 2022. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genom. 23 (1):210. doi:10.1186/s12864-022-08459-y.
  • Rozman, V., P. M. Lorbeg, T. Accetto, and B. B. Matijašić. 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 314:108388. doi:10.1016/j.ijfoodmicro.2019.108388.
  • Rudkin, J. K., R. M. McLoughlin, A. Preston, R. C. Massey, and J. B. Bliska. 2017. Bacterial toxins: Offensive, defensive, or something else altogether? PLoS Pathog. 13 (9):e1006452. doi:10.1371/journal.ppat.1006452.
  • Ruiz-Capillas, C., and A. M. Herrero. 2019. Impact of biogenic amines on food quality and safety. Foods 8 (2):62. doi:10.3390/foods8020062.
  • Russel, J., R. Pinilla-Redondo, D. Mayo-Muñoz, S. A. Shah, and S. J. Sørensen. 2020. CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. Crispr. J. 3 (6):462–469. doi:10.1089/crispr.2020.0059.
  • Salvetti, E., L. Orrù, V. Capozzi, A. Martina, A. Lamontanara, D. Keller, H. Cash, G.E. Felis, L. Cattivelli, S. Torriani, et al. 2016. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl. Microbiol. Biotechnol. 100 (10):4595–4605. doi:10.1007/s00253-016-7416-9.
  • Santiago-López, L., A. Hernández-Mendoza, V. Mata-Haro, B. Vallejo-Cordoba, and A. F. González-Córdova. 2018. Immune response induced by fermented milk with potential probiotic strains isolated from artisanal cocido cheese. Food Agric. Immunol. 29 (1):911–929. doi:10.1080/09540105.2018.1485632.
  • Schmid, J., V. Sieber, and B. Rehm. 2015. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front Microbiol. 6:496. doi:10.3389/fmicb.2015.00496.
  • Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30 (14):2068–2069. doi:10.1093/bioinformatics/btu153.
  • Sharifi-Rad, J., C. F. Rodrigues, Z. Stojanović-Radić, M. Dimitrijević, A. Aleksić, K. Neffe-Skocińska, D. Zielińska, D. Kołożyn-Krajewska, B. Salehi, S. MiltonPrabu, et al. 2020. Probiotics: Versatile bioactive components in promoting human health. Medicina 56 (9):433. doi:10.3390/medicina56090433.
  • Sharma, A. K., N. Dhasmana, N. Dubey, N. Kumar, A. Gangwal, M. Gupta, and Y. Singh. 2017. Bacterial virulence factors: Secreted for survival. Indian J. Microbiol. 57 (1):1–10. doi:10.1007/s12088-016-0625-1.
  • Siguier, P., J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler. 2006. Isfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 34 (90001):D32–D36. doi:10.1093/nar/gkj014.
  • Singh, A., V. Vishwakarma, and B. Singhal. 2018. Metabiotics: The functional metabolic signatures of probiotics: Current state-of-art and future research priorities—Metabiotics: Probiotics effector molecules. Adv. Biosci. Biotechnol. 9 (4):147–189. doi:10.4236/abb.2018.94012.
  • Skinnider, M. A., C. W. Johnston, M. Gunabalasingam, N. J. Merwin, A. M. Kieliszek, R. J. MacLellan, H. Li, M.R. Ranieri, A.L. Webster, M.P. Cao, et al. 2020. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 11(1):6058. doi:10.1038/s41467-020-19986-1.
  • Sousa, M. A., G. R. Rama, C. F. Volken de Souza, and C. E. Granada. 2020. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol. Prog. 36 (2):e2937. doi:10.1002/btpr.2937.
  • Stergiou, O. S., K. Tegopoulos, D. E. Kiousi, M. Tsifintaris, A. C. Papageorgiou, C. C. Tassou, N. Chorianopoulos, P. Kolovos, and A. Galanis. 2021. Whole-genome sequencing, phylogenetic and genomic analysis of Lactiplantibacillus pentosus L33, a potential probiotic strain isolated from fermented sausages. Front Microbiol. 12:746659. doi:10.3389/fmicb.2021.746659.
  • Suwannasom, N., I. Kao, A. Pruß, R. Georgieva, and H. Bäumler. 2021. Riboflavin: The health benefits of a forgotten natural vitamin. Int. J. Mol. Sci. 21 (3):950. doi:10.3390/ijms21030950.
  • Tarrah, A., S. Pakroo, W. J. F. Lemos Junior, A. F. Guerra, V. Corich, and A. Giacomini. 2020. Complete genome sequence and carbohydrates-active enzymes (CAZymes) analysis of Lactobacillus paracasei DTA72, a potential probiotic strain with strong capability to use inulin. Curr. Microbiol. 77 (10):2867–2875. doi:10.1007/s00284-020-02089-x.
  • Tatusova, T., M. DiCuccio, A. Badretdin, V. Chetvernin, E. P. Nawrocki, L. Zaslavsky, A. Lomsadze, K. D. Pruitt, M. Borodovsky, and J. Ostell. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44 (14):6614–6624. doi:10.1093/nar/gkw569.
  • Urban-Chmiel, R., A. Marek, D. Stępień-Pyśniak, K. Wieczorek, M. Dec, A. Nowaczek, and J. Osek. 2022. Antibiotic resistance in bacteria-A review. Antibiotics 11 (8):1079. doi:10.3390/antibiotics11081079.
  • Valdez-Baez, J., F. M. R. da Costa, A. C. Pinto Gomide, R. Profeta, A. L. da Silva, T. D. J. Sousa, M. V. C. Viana, R. Bentes Kato, M. F. Americo, A. dos Santos Freitas, et al. 2022. Comparative genomics and in silico evaluation of genes related to the probiotic potential of Bifidobacterium breve 1101A. Bacteria 1:161–182. doi:10.3390/bacteria1030013.
  • Valeriano, V. D. V., J. K. Oh, B. B. Bagon, H. Kim, and D.-K. Kang. 2019. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics 111 (1):24–33. doi:10.1016/j.ygeno.2017.12.009.
  • van Heel, A. J., A. de Jong, C. Song, J. H. Viel, J. Kok, and O. P. Kuipers. 2018. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46 (W1):W278–W281. doi:10.1093/nar/gky383.
  • Vandecraen, J., M. Chandler, A. Aertsen, and R. van Houdt. 2017. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43 (6):709–730. doi:10.1080/1040841x.2017.1303661.
  • Vinayamohan, P. G., A. J. Pellissery, and K. Venkitanarayanan. 2022. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr. Opin. Food Sci. 47:100882. doi:10.1016/j.cofs.2022.100882.
  • Vitetta, L., S. Coulson, M. Thomsen, T. Nguyen, and S. Hall. 2017. Probiotics, D-lactic acidosis, oxidative stress and strain specificity. Gut. Microbes. 8 (4):311–322. doi:10.1080/19490976.2017.1279379.
  • Wang, Y., Q. Liang, B. Lu, H. Shen, S. Liu, Y. Shi, S. Leptihn, H. Li, J. Wei, C. Liu, et al. 2021a. Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genom. 22(1):210. doi:10.1186/s12864-021-07539-9.
  • Wang, Y., J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang, and W. Geng. 2021b. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng. Biotechnol. 9:612285. doi:10.3389/fbioe.2021.612285.
  • Wattam, A. R., D. Abraham, O. Dalay, T. L. Disz, T. Driscoll, J. L. Gabbard, J. J. Gillespie, R. Gough, D. Hix, R. Kenyon, et al. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42(D1):D581–D591. doi:10.1093/nar/gkt1099.
  • Wendel, U. 2022. Assessing viability and stress tolerance of probiotics‒A review. Front Microbiol. 12:818468. doi:10.3389/fmicb.2021.818468.
  • Wendling, C. C. 2023. Prophage mediated control of higher order interactions - insights from multi-level approaches. Curr. Opin. Syst. Biol. 35:100469. doi:10.1016/j.coisb.2023.100469.
  • Wróblewska, J., M. Wróblewski, I. Hołyńska-Iwan, M. Modrzejewska, J. Nuszkiewicz, W. Wróblewska, and A. Woźniak. 2023. The role of glutathione in selected viral diseases. Antioxidants 12 (7):1325. doi:10.3390/antiox12071325.
  • Wu, Y., Z. Ye, P. Feng, R. Li, X. Chen, X. Tian, R. Han, A. Kakade, P. Liu, and X. Li. 2021. Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid. Gut. Microbes 13 (1):e1897211. doi:10.1080/19490976.2021.1897211.
  • Xiao, Y., J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2021. Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microb. Genom. 7 (6):000581. doi:10.1099/mgen.0.000581.
  • Xie, Z., H. Tang, and J. Hancock. 2017. Isescan: Automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33 (21):3340–3347. doi:10.1093/bioinformatics/btx433.
  • Yadav, R., P. K. Singh, and P. Shukla. 2018. Metabolic engineering for probiotics and their genome-wide expression profiling. Curr. Protein Pept. Sci. 19 (1):68–74. doi:10.2174/1389203718666161111130157.
  • Ye, K., P. Li, and Q. Gu. 2020. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 112 (5):3142–3149. doi:10.1016/j.ygeno.2020.05.015.
  • Yoon, S.-H., S. Ha, J. Lim, S. Kwon, and J. Chun. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie. Van Leeuwenhoek 110 (10):1281–1286. doi:10.1007/s10482-017-0844-4.
  • Yu, Y., M. Zong, L. Lao, J. Wen, D. Pan, and Z. Wu. 2022. Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment. Food Funct. 13 (6):3098–3109. doi:10.1039/d1fo04328e.
  • Zhang, H., T. Yohe, L. Huang, S. Entwistle, P. Wu, Z. Yang, P. K. Busk, Y. Xu, and Y. Yin. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46 (W1):W95–W101. doi:10.1093/nar/gky418.
  • Zhang, L., H. Ma, M. Fakhar-E-Alam Kulyar, H. Pan, K. Li, A. Li, Q. Mo, Y. Wang, H. Dong, Y. Bao, et al. 2022. Complete genome analysis of lactobacillus fermentum YLF016 and its probiotic characteristics. Microb. Pathog. 162:105212. doi:10.1016/j.micpath.2021.105212.
  • Zhao, Y., K. Hong, J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2019. Lactobacillus fermentum and its potential immunomodulatory properties. J. Funct. Foods 56:21–32. doi:10.1016/j.jff.2019.02.044.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70(4):2782–2858. doi:10.1099/ijsem.0.004107.
  • Zhu, K., F. Tan, J. Mu, R. Yi, X. Zhou, and X. Zhao. 2019. Anti-obesity effects of Lactobacillus fermentum CQPC05 isolated from Sichuan pickle in high-fat diet-induced obese mice through PPAR-α signaling pathway. Microorganisms 7 (7):194. doi:10.3390/microorganisms7070194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.