Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 36, 2024 - Issue 5
143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

What can be gained from studying coprolite taphonomy: the case of Villanueva-1 (Palencia, Spain)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1028-1044 | Received 20 Feb 2023, Accepted 10 Apr 2023, Published online: 27 Apr 2023

References

  • Aldridge R, Gabbott S, Siveter L, Theron J. 2006. Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: palaeoecological and palaeobiological implications. Palaeontology. 49(4):857–871. [Accessed 2019 January 07]. doi:10.1111/j.1475-4983.2006.00570.x.
  • Andrews P. 1990. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury- Sub-Mendip, Somerset, U.K. Chicago: University of Chicago Press.
  • Arribas A. 1994. Los macromamíferos del yacimiento mesopleistoceno de Villacastín (Segovia, España). Boletín Geológico y Minero. 105(4):344–361.
  • Arribas A, Baeza E, Bermúdez D, Blanco S, Durán J, Garrido G, Gumiel J, Hernández R, Soria J, Viseras C. 2004. Nuevos registros paleontológicos de grandes mamíferos en la Cuenca de Guadix-Baza (Granada): aportaciones del Proyecto Fonelas al conocimiento sobre las faunas continentales del Plioceno-Pleistoceno europeo. Boletín Geológico y Minero. 115(3):567–581.
  • Arribas Herrera A, Aura Tortosa J, Carrión J, Jordá Pardo J, Perez Ripoll M. 2004. Presencia de hiena manchada en los depósitos basales (Pleistoceno superior final) del yacimiento arqueológico de la Cueva de Nerja (Málaga, España). Revista Española de Paleontología. 19(1):109–121.
  • Arribas Herrera A, Riquelme Cantal JA, Palmqvist P, Álvarez Coto G G, Hernández Manchado R, Laplana Conesa C, Soria Mingorance JM, Viseras Alarcón C, Durán Valsero JJ, Gumiel Martínez P, et al. 2001. Un nuevo yacimiento de grandes mamíferos villafranquienses en la Cuenca de Guadix-Baza (Granada): fonelas P-1, primer registro de una fauna próxima al límite Plio-Pleistoceno en la Península Ibérica. Boletín Geológico y Minero. 112(4):3–34.
  • Barrios-de Pedro S, Poyato-Ariza FJ, Moratalla JJ, Buscalioni AD, Wong WO. 2018. Exceptional coprolite association from the Early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain. PLOS ONE. 13(5):e0196982. Public Library of Science. doi:10.1371/journal.pone.0196982.
  • Beck CW, Bryant VM, McDonough KN. 2019. Evidence for non-random distribution of pollen in human coprolites. Archaeol Anthropol Sci. 11(11):5983–5998. doi:10.1007/s12520-019-00839-y.
  • Beltrame MO, Fugassa MH, Sauthier DU, Sardella NH. 2014. Paleoparasitological study of rodent coprolites from “Los Altares” paleontological site, Patagonia, Argentina. Quaternary International. 352(1):59–63. [Accessed 2023 January 15]. doi:10.1016/j.quaint.2014.06.002.
  • Bennett E, Gorgé O, Grange T, Fernández-Jalvo Y, Geigl E. 2016. Chapter 12: coprolites, paleogenomics and bone content analysis. In: Fernández-Jalvo Y, King T, Yepiskoposyan L, Andrews P, editors. Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology Series: Springer Cham; p. 271–286. doi:10.1007/978-3-319-24924-7.
  • Boast AP, Weyrich LS, Wood JR, Metcalf JL, Knight R, Cooper A. 2018. Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proceedings of the National Academy of Sciences. 115(7):1546–1551. doi:10.1073/pnas.1712337115.
  • Bon C, Berthonaud V, Maksud F, Labadie K, Poulain J, Artiguenave F, Wincker P, Aury JM, Elalouf JM. 2012. Coprolites as a source of information on the genome and diet of the cave hyena. Proceedings of the Royal Society B: Biological Sciences. 279(1739):2825–2830. doi:10.1098/rspb.2012.0358.
  • Bradley W. 1946. Coprolites from the Bridger Formation of Wyoming, their composition and microoerganisms. Am J Sci. 244(3):215–239. doi:10.2475/ajs.244.3.215.
  • Brochier JE, Villa P, Giacomarra M, Tagliacozzo A. 1992. Shepherds and sediments: geo-ethnoarchaeology of pastoral sites. J Anthropol Archaeol. 11(1):47–102. 10.1016/0278-4165(92)90010-9.
  • Brugal JP, Argant J, Crispim JA, Figueiredo S, Serra AM, Palmqvist P. 2012. The complex carnivore-rich assemblages from Furninha (Peniche, Portugal): a multidisciplinary approach. J Taphonomy. 10(3–4):417–438.
  • Canti M. 1997. An investigation of microscopic calcareous spherulites from herbivore dungs. J Archaeol Sci. 24(3):219–231. 10.1006/jasc.1996.0105.
  • Canti M. 1998. The micromorphological identification of faecal spherulites from archaeological and modern materials. J Archaeol Sci. 25(5):435–444. 10.1006/jasc.1997.0210.
  • Canti M. 1999. The production and preservation of faecal spherulites: animals, environment and taphonomy. J Archaeol Sci. 26(3):251–258. 10.1006/jasc.1998.0322.
  • Canti MG, Brochier JE. 2017. Chapter 5: faecal spherulites. In: archaeological soil and sediment micromorphology. Newark (UK): John Wiley & Sons, Incorporated; p. 51–54. Available from: http://ebookcentral.proquest.com/lib/universidadcomplutense-ebooks/detail.action?docID=4983710.
  • Cardoso JL. 1993. Contribuição para o conhecimento dos grandes mamíferos do Plistocénico Superior de Portugal. Oeiras: Câmara municipal de Oeiras.
  • Carrión J, Gil G, Rodríguez E, Fuentes N, García-Antón M, Arribas A. 2005. Palynology of badger coprolites from central Spain. Palaeogeogr Palaeoclimatol Palaeoecol. 226(3–4):259–271. 10.1016/j.palaeo.2005.05.016.
  • Carrión J, Riquelme J, Navarro C, Munuera M. 2001. Pollen in hyaena coprolites reflects late glacial landscape in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol. 176(1–4):193–205. 10.1016/S0031-0182(01)00338-8.
  • Carrión J, Scott L, Arribas A, Fuentes N, Gil-Romera G, Montoya E. 2007. Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites. J Quat Sci. 22(2):191–202. doi:10.1002/jqs.1024.
  • Chame M. 2003. Terrestrial mammal feces: a morphometric summary and description. Memórias Do Instituto Oswaldo Cruz. 98(1):71–94. doi:10.1590/S0074-02762003000900014.
  • Chin K. 2002. Analyses of coprolites produced by carnivorous vertebrates. Paleontol Soc Pap. 8:43–50. doi:10.1017/S1089332600001042.
  • Chin K, Eberth DA, Schweitzer MH, Rando TA, Sloboda WJ, Horner JR. 2003. Remarkable preservation of undigested muscle tissue within a Late Cretaceous Tyrannosaurid coprolite from Alberta, Canada. PALAIOS. 18(3):286–294. doi:10.1669/0883-1351(2003)018<0286:RPOUMT>2.0.CO;2.
  • Colmenero J, Vargas I, García-Ramos J, Manjón M, Crespo A, Matas J, Pérez González A, Elízaga E, Rodríguez Fernández L. 1978. Mapa Geológico de España E. 1:50.000 Segunda Serie (MAGNA). Madrid: IGME. Mapa geológico de la Hoja no 132 (Guardo).
  • Dentzien-Dias P, Carrillo-Briceño JD, Francischini H, Sánchez R. 2018. Paleoecological and taphonomical aspects of the Late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol. 490: 590–603. 10.1016/j.palaeo.2017.11.048.
  • de Oliveira FA, Santucci RM. 2017. Criteria for recognition and taphonomy of coprolites from the Serra da Galga Member, Marília Formation (Upper Cretaceous) Minas Gerais, Brazil. Journal of South American Earth Sciences. 78: 1–16. doi:10.1016/j.jsames.2017.05.012.
  • Diedrich CG. 2012. Typology of ice age spotted hyena Crocuta crocuta spelaea (Goldfuss, 1823) coprolite aggregate pellets from the European Late Pleistocene and their significance at dens and scavenging sites. In: Hunt AP, Milàn J, Lucas SG, Spielmann JA, editors. Vertebrate Coprolites. Vol. Bulletin 57. Albuquerque: New Mexico Museum of Natural History and Science; p. 369–377.
  • Djamali M, Mashkour M, Akhani H, Belkacem D, Gambin B, Leydet M, Samadi N, Tengberg M, Gandouin E. 2020. Pollen analysis of present-day striped hyena (Hyaena hyaena) scats from central Iran: implications for dryland paleoecology and animal paleoethology. Rev Palaeobot Palynol. 281: 104277. 10.1016/j.revpalbo.2020.104277.
  • Eriksson ME, Lindgren J, Chin K, Mansby U. 2011. Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia. 44(4):455–468. John Wiley & Sons, Ltd. doi:10.1111/j.1502-3931.2010.00257.x.
  • Fernández Rodríguez C, Ramil Rego P, Martínez Cortizas A. 1995. Characterization and depositional evolution of hyaena (Crocuta crocuta) coprolites from La Valifia Cave (Northwest Spain). J Archaeol Sci. 22(5):597–607. doi:10.1016/S0305-4403(95)80145-6.
  • García N, Arsuaga JL. 1999. Carnivores from the Early Pleistocene hominid-bearing Trinchera Dolina 6 (Sierra de Atapuerca, Spain). J Hum Evol. 37(3–4):415–430. 10.1006/jhev.1999.0325.
  • García-Ramos J, Vargas I, Manjón M, Colmenero J, Gutiérrez Elorza M, Molina E, Crespo A, Matas J. 1982. Memoria de la Hoja no 132 (Guardo). Madrid: IGME. Mapa Geológico de España E. 1:50.000 (MAGNA).
  • Gatta M, Sinopoli G, Giardini M, Giaccio B, Hajdas I, Pandolfi L, Bailey G, Spikins P, Rolfo MF, Sadori L. 2016. Pollen from Late Pleistocene hyena (Crocuta crocuta spelaea) coprolites: an interdisciplinary approach from two Italian sites. Rev Palaeobot Palynol. 233: 56–66. 10.1016/j.revpalbo.2016.07.005.
  • Gill FL, Crump MP, Schouten R, Bull ID. 2009. Lipid analysis of a ground sloth coprolite. Quat Res. 72(2):284–288. Cambridge University Press. doi: 10.1016/j.yqres.2009.06.006.
  • Gil-Romera G, Neumann FH, Scott L, Sevilla-Callejo M, Fernández-Jalvo Y. 2014. Pollen taphonomy from hyaena scats and coprolites: preservation and quantitative differences. J Archaeol Sci. 46: 89–95. 10.1016/j.jas.2014.02.027.
  • González-Sampériz P, Montes L, Utrilla P. 2003. Pollen in hyena coprolites from Gabasa Cave (northern Spain). Rev Palaeobot Palynol. 126(1–2):7–15. doi:10.1016/S0034-6667(03)00033-2.
  • Harrison T. 2011. Coprolites: taphonomic and paleoecological implications. In: Harrison T, editor. Paleontology and Geology of Laetoli: Human Evolution in Context . Dordrecht: Springer. Vertebrate Paleobiology and Paleoanthropology Series; p. 279–292. doi:10.1007/978-90-481-9956-3-14.
  • Hollocher KT, Hollocher TC. 2012. Early process in the fossilization of terrestrial feces to coprolites, and microstructure preservation. In: Hunt A, Milàn J, Lucas S, Spielmann J, editors. Vertebrate coprolites. Albuquerque: New Mexico Museum of Natural History and Science Bulletin; p. 79–91.
  • Hollocher KT, Hollocher TC, Rigby JK. 2010. A phosphatic coprolite lacking diagenetic permineralization from the Upper Cretaceous Hell Creek Formation, Northeastern Montana: importance of dietary calcium phosphate in preservation. PALAIOS. 25(2):132–140. doi:10.2110/palo.2008.p08-132r.
  • Horwitz LK. 1990. The origin of partially digested bones recovered from archaeological contexts in Israel. Paléorient. 16(1):97–106. 10.3406/paleo.1990.4522.
  • Horwitz L, Goldberg P. 1989. A study of Pleistocene and Holocene hyaena coprolites. J Archaeol Sci. 16(1):71–94. 10.1016/0305-4403(89)90057-5.
  • Hunt A, Lucas S. 2012. Descriptive terminology of coprolites and recent feces. In: Hunt AP, Milàn J, Lucas SG, Spielmann JA, editors Vertebrate Coprolites. Vol. Bulletin 57. Albuquerque: New Mexico Museum of Natural History and Science; p. 153–160.
  • Hunt AP, Lucas. 2020. Hyena hegemony: biogeography and taphonomy of Pleistocene vertebrate coprolites with description of a new mammoth coprolite ichnotaxon. Ichnos. 27(2):111–121. Taylor & Francis. doi: 10.1080/10420940.2019.1612393.
  • Hunt AP, Lucas SG. 2021a. Coprolites. In: Alderton D, Elias SA, editors. Encyclopedia of Geology. 2nd ed. Oxford: Academic Press; p. 532–544. Available from https://www.sciencedirect.com/science/article/pii/B9780124095489124777.
  • Hunt AP, Lucas SG. 2021b. The ichnology of vertebrate consumption: Dentalites, gastroliths and bromalites. Vol. Bulletin 87. Albuquerque: New Mexico Museum of Natural History and Science.
  • Hunt AP, Lucas SG. 2022. Coprolites in caves: late Pleistocene coprofaunas of the American Southwest and their significance. New Mexico Museum of Natural History and Science Bulletin. 88:343–359.
  • Hunt A, Lucas S, Spielmann J. 2012. New coprolite ichnotaxa from the Buckland Collection at the Oxford University Museum of Natural History. New Mexico Museum of Natural History and Science Bulletin. 57:115–124.
  • Hunt A, Lucas S, Spielmann J, Lerner A. 2007. A review of vertebrate coprolites of the Triassic with descriptions of new Mesozoic ichnotaxa. In: Lucas SG, Spielmann JA, editors The Global Triassic. Vol. Bulletin 41. Albuquerque: New Mexico Museum of Natural History and Science; p. 88–107.
  • Iñigo C, Molero G, Maldonado E. 1998. Los carnívoros del yacimiento pleistoceno de Cueva del Búho (Segovia, España) y sus huellas de actividad. Estudios Geológicos. 54(1–2):65–73. 10.3989/egeol.98541-2205.
  • Jouy-Avantin F, Debenath A, Moigne AM, Moné H. 2003. A standardized method for the description and the study of coprolites. J Archaeol Sci. 30(3):367–372. 10.1006/jasc.2002.0848.
  • Krause JM, Piña CI. 2012. Reptilian coprolites in the Eocene of Central Patagonia, Argentina. J Paleontol. 86(3):527–538. Boulder: Cambridge University Press. doi:10.1666/11-075.1.
  • Kruuk H. 1972. The spotted hyena: a study of predation and social behavior. Chicago: University of Chicago Press. Wildflife Behavior and Ecology.
  • Kruuk H. 1976. Feeding and social behaviour of the striped hyaena (Hyaena vulgaris Desmarest). Afr J Ecol. 14(2):91–111. doi:10.1111/j.1365-2028.1976.tb00155.x.
  • Kuhn BF. 2006. The collection behaviour and taphonomic signatures of hyaenids [dissertation]. Pretoria (South Africa): University of Pretoria.
  • Kurtén B. 1968. Pleistocene mammals of Europe. London: Weidenfeld and Nicolson. The World Naturalist.
  • Larkin N, Alexander J, Lewis M. 2000. Using experimental studies of recent faecal material to examine hyaena coprolites from the West Runton Freshwater Bed, Norfolk, U.K. Journal of Archaeological Science. 27:19–31. doi: 10.1006/jasc.1999.0437.
  • Linseele V, Riemer H, Baeten J, De Vos D, Marinova E, Ottoni C. 2013. Species identification of archaeological dung remains: a critical review of potential methods. Environ Archaeol. 18(1):5–17. doi:10.1179/1461410313Z.00000000019.
  • Mangano G. 2011. An exclusively hyena-collected bone assemblage in the Late Pleistocene of Sicily: taphonomy and stratigraphic context of the large mammal remains from San Teodoro Cave (North-Eastern Sicily, Italy). J Archaeol Sci. 38(12):3584–3595. 10.1016/j.jas.2011.08.029.
  • Martínez-Navarro B, Ros-Montoya S, Espigares MP, Madurell-Malapeira J. 2018. Los mamíferos del Plioceno y Pleistoceno de la Península Ibérica. PH: boletín del Instituto Andaluz del Patrimonio Histórico. 94:206–249. doi10.33349/2018.0.4203.
  • Mateos A, Rodríguez J, Laplana C, Sevilla P, Cañellas A, Karampaglidis T, Gómez G R. 2014. Los yacimientos arqueo-paleontológicos de La Loma y el poblamiento paleolítico del norte de Palencia. Colección de historia montaña palentina. 8:11–44. Available from http://hdl.handle.net/20.500.12136/643
  • Mills MGL. 1989. The comparative behavioral ecology of hyenas: the importance of diet and food dispersion. In: Gittleman JL, editor. Carnivore Behavior, Ecology, and Evolution. Boston (MA): Springer US; p.125–142. doi:10.1007/978-1-4757-4716-4_5.10.1007/978-1-4757-4716-45
  • Morse HW, Warren CH, Donnay JDH. 1932. Artificial spherulites and related aggregates. Am J Sci. s5-23(137):421. 10.2475/ajs.s5-23.137.421.
  • Munsell AH. 2015. Munsell soil-color charts: with genuine Munsell color chips. 2009th ed. Grand Rapids: Munsell.
  • Ngan-Tillard D, Huisman D. 2017. Chapter 42: Micro-CT scanning. Nicosia, C, Stoops, GR, editors. Archaeological soil and sediment micromorphology. Newark (UK): John Wiley & Sons, Incorporated; p. 441–449. Available from: http://ebookcentral.proquest.com/lib/universidadcomplutense-ebooks/detail.action?docID=4983710.
  • Northwood C. 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology. 48(1):49–68. doi:10.1111/j.1475-4983.2004.00432.x.
  • Ochando J, Carrión J, Rodríguez-Vidal J, Jiménez-Arenas J, Fernández S, Amorós G, Munuera M, Scott L, Stewart J, Knul M, et al. 2020. Palynology and chronology of hyaena coprolites from the Piñar karstic Caves Las Ventanas and Carihuela, southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol. 552:1–13. doi:10.1016/j.palaeo.2020.109771.
  • Owocki K, Niedzwiedzki G, Sennikov AG, Golubev VK, Janiszewska K, Sulej T. 2012. Upper Permian vertebrate coprolites from Vyazniki and Gorokhovets, Vyatkian regional stage. Russian Platform Palaios. 27(12):867–877. doi:10.2110/palo.2012.p12-017r.
  • Pesquero M, Salesa M, Espílez E, Mampel L, Siliceo G, Alcalá L. 2011. An exceptionally rich hyaena coprolites concentration in the Late Miocene mammal fossil site of La Roma 2 (Teruel, Spain): taphonomical and palaeoenvironmental inferences. Palaeogeogr Palaeoclimatol Palaeoecol. 311(1–2):30–37. doi:10.1016/j.palaeo.2011.07.013.
  • Pesquero MD, Souza-Egipsy V, Alcalá L, Ascaso C, Fernández-Jalvo Y. 2013. Calcium phosphate preservation of faecal bacterial negative moulds in hyaena coprolites. Acta Palaeontologica Polonica. 59(4):997–1005. doi:10.4202/app.2012.0067.
  • Pineda A, Saladié P, Expósito I, Rodríguez-Hidalgo A, Cáceres I, Huguet R, Rosas A, López- Polín L, Estalrrich A, García-Tabernero A, et al. 2017. Characterizing hyena coprolites from two latrines of the Iberian Peninsula during the Early Pleistocene: gran Dolina (Sierra de Atapuerca, Burgos) and la Mina (Barranc de la Boella, Tarragona). Palaeogeogr Palaeoclimatol Palaeoecol. 480:1–17. doi:10.1016/j.palaeo.2017.04.021.
  • Qvarnström M, Niedźwiedzki G, Žigaitė Ž. 2016. Vertebrate coprolites (fossil faeces): an underexplored Konservat-Lagerstätte. Earth Sci Rev. 162:44–57. doi:10.1016/j.earscirev.2016.08.014.
  • Reinhard K, Camacho M, Geyer B, Hayek S, Horn C, Otterson K, Russ J. 2019. Imaging coprolite taphonomy and preservation. Archaeol Anthropol Sci. 11(11):6017–6035. doi:10.1007/s12520-019-00946-w.
  • Sanz M, Daura J, Égüez N, Brugal JP. 2016. Not only hyenids: a multi-scale analysis of Upper Pleistocene carnivore coprolites in Cova del Coll Verdaguer (NE Iberian Peninsula). Palaeogeogr Palaeoclimatol Palaeoecol. 443:249–262. Available from https://www.sciencedirect.com/science/article/pii/S0031018215007178
  • Sauqué V, Rabal-Garcés R, Madurell-Malaperia J, Gisbert M, Zamora S, de Torres T, Ortiz J, Cuenca-Bescós G. 2017. Pleistocene cave hyenas in the Iberian Peninsula: new insights from Los Aprendices cave (Moncayo, Zaragoza). Palaeontologia Electronica. 20(1.11A):1–38.
  • Scott L, Fernández-Jalvo Y, Carrión J, Brink J. 2003. Preservation and interpretation of pollen in hyaena coprolites: taphonomic observations from Spain and Southern Africa. Palaeontologia Africana. 39:83–91.
  • Scott L, Rossouw L, Cordova C, Risberg J. 2016. Chapter 13: palaeoenvironmental context of coprolites and plant microfossils from Unit II. Azokh 1. In: Fernández-Jalvo Y, King T, Yepiskoposyan L, Andrews P, editors. Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology. Springer; p. 287–295. doi:10.1007/978-3-319-24924-7_13.
  • Sevilla P 1987. Estudio paleontológico de los Quirópteros del Cuaternario español [ dissertation]. Madrid: Universidad Complutense de Madrid.
  • Skinner J, van Aarde R. 1981. The distribution and ecology of the brown hyaena Hyaena brunnea and spotted hyaena Crocuta in the central Namib Desert. Madoqua. 12(4):231–239. Available from https://journals.co.za/content/madoqua/12/4/AJA10115498214
  • Stuart C, Stuart T. 2000. A field guide to the tracks and signs of Southern and East African wildlife. Cape Town: Struik.
  • Taru P, Backwell L. 2013. Identification of fossil hairs in Parahyaena brunnea coprolites from Middle Pleistocene deposits at Gladysvale Cave, South Africa. J Archaeol Sci. 40(10):3674–3685. Available from http://www.sciencedirect.com/science/article/pii/S030544031300160X
  • Val A, Taru P, Steininger C. 2014. New taphonomic analysis of large-bodied primate assemblage from Cooper’s D, Bloubank Valley, South Africa. South African Archaeological Bulletin. 69(199):49–58. Avaliable from: https://search.informit.org/doi/10.3316/informit.750117340081561.
  • Velázquez NJ, Burry LS. 2022. New insights into the palaeodiet and paleoenvironment of the camelids (Lama guanicoe) based on a palynological analysis of mid-Holocene coprolites from Cueva Milodon Norte 1. Pueyrredón Lake, Patagonia, Argentina. Rev Palaeobot Palynol. 300:104626. [Accessed 2023 January 18]. https://www.sciencedirect.com/science/article/pii/S0034666722000240.
  • Vera JA, Ancochea Soto E, Calvo Sorando JP, SopeñaA, Tejero López R 2004. In: Vera JA, Ancochea Soto E, Calvo Sorando JP, Sopeña A, Tejero López R, editors. Geología de España. Madrid: Sociedad Geológica de España; Instituto Geológico y Minero de España.
  • Williams J, Andrews P, García-Morato S, Villa P, Fernández-Jalvo Y. 2018. Hyena as a predator of small mammals? Taphonomic analysis from the site of Bois Roche, France. Paleobiology. 44(3):511–529.
  • Wood JR, Wilmshurst JM, Wagstaff SJ, Worthy TH, Rawlence NJ, Cooper A. 2012. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand’s extinct Upland Moa (Megalapteryx didinus). PLOS ONE. 7(6):e40025. Public Library of Science. doi:10.1371/journal.pone.0040025.
  • Yang L, Zhang X, Zhao X, Xiang H. 2022. The technological advance and application of coprolite analysis. Frontiers in Ecology and Evolution. 9:1–10. Available from: https://www.frontiersin.org/articles/10.3389/fevo.2021.797370.
  • Yll R, Carrión J, Marra A, Bonfiglio L. 2006. Vegetation reconstruction on the basis of pollen in Late Pleistocene hyena coprolites from San Teodoro Cave (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology. 237(1):32–39. doi:10.1016/j.palaeo.2005.11.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.