Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 3
90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on flow and heat transfer of Al-kerosene nanofuels for regenerative cooling application

&
Pages 233-245 | Received 25 May 2022, Accepted 25 Aug 2022, Published online: 07 Sep 2022

References

  • X. W. Zhang, et al. “Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J],” Chem. Eng. Sci., vol. 180, pp. 95–125, 2017. DOI: 10.1016/j.ces.2017.11.044.
  • J. J. Zou, et al. “High-density liquid hydrocarbon fuels for aerospace propulsion: synthesis and application[J],” J. Propuls. Technol, vol. 10, pp. 1419–1425, 2014.
  • R. M. Traci, J. L. Farr, and T. Laganelli, “A thermal management systems model for the NASA GTX RBCC concept,” NASA Technical Report, NASA/CR-2002-211587.
  • X. Wang, et al. “Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor[J],” Appl. Therm. Eng., vol. 89, pp. 883–896, 2015. DOI: 10.1016/j.applthermaleng.2015.06.071.
  • W. R. Wagner and J. M. Shoji, “Advanced regenerative cooling techniques for future space transportation systems[C],” 11th Propulsion Conference, 1975. DOI:10.2514/6.1975-1247.
  • H. Huang, L. J. Spadaccini, and D. R. Sobel, “Fuel-cooled thermal management for advanced aero-Engines[J],” J. Eng. Gas Turbines Power, vol. 126, pp. 284–293, 2004. DOI: 10.1115/1.1689361.
  • S. W. Chen, “Source and development of gel propellant[J],” Explos. Pyrotech, vol. 1, pp. 47–52, 1996.
  • T. T. Wu, et al. “Synthesis of stable JP-10-based nanofluid fuels based on modified aluminum nanoparticles[J],” J. Eng. Thermophys., vol. 7, pp. 1887–1894, 2021.
  • F. S. Shariatmadar and S. G. Pakdehi, “Synthesis and characterization of aviation turbine kerosene nanofuel containing boron nanoparticles[J],” Appl. Therm. Eng., vol. 112, pp. 1195–1204, 2017. DOI: 10.1016/j.applthermaleng.2016.09.015.
  • B. H. Chen, et al. “Adsorption behavior of tween 85 on nano-aluminum particles in aluminum/JP-10 suspensions[J],” J Nanosci Nanotechnol, vol. 19, no. 4, pp. 2108–2115, 2019. DOI: 10.1166/jnn.2019.15803.
  • H. Tyagi, et al. “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J],” Nano Lett., vol. 8, no. 5, pp. 1410–1416, 2008. DOI: 10.1021/nl080277d.
  • Y. Gan and L. Qiao, “Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J],” Combust. Flame., vol. 158, no. 2, pp.354–368, 2011. DOI: 10.1016/j.combustflame.2010.09.005.
  • Y. N. Gan and L. Qiao, “Burning characteristics of fuel droplets containing dilute energetic nanoparticles[C],” 48th AIAA Aerospace Sciences Meeting Icluding the New Horizons Forum and Aerospace Exposition, AIAA-2010-620, 2010, Orlando, Florida.
  • S. Tanvir and L. Qiao, “Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J],” J. Propuls. Power, vol. 31, no. 1, pp.408–415, 2014. DOI: 10.2514/1.B35500.
  • S. Tanvir and L. Qiao. Burning characteristics of liquid fuels with suspensions of energetic nanoparticles: the effect of droplet size[C] . 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA-2013-3771, 2013, San Jose, California.
  • H. Xu, et al. “Transparent nanofluids with high thermal conductivity for improved convective thermal management of optoelectronic devices[J],” Exp. Heat Transf., vol. 35, no. 2, pp. 183–195, 2020. DOI: 10.1080/08916152.2020.1829749.
  • M. H. M. Shankara and N. H. Ramakrishna, “Investigations on the effect of disturbed flow using differently configured turbulators and Alumina nanofluid as a coolant in a double tube heat exchanger[J],” Exp. Heat Transf., vol. 25, pp. 282–307, 2022.
  • S. M. Hashemi and M. A. Akhavan-Behabadi, “An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux[J],” INT COMMUN HEAT MASS, vol. 39, no. 1, pp.144–151, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.09.002.
  • T. N. Cong, et al. “Heat Transfer Enhancement Using Al2O3-water Nanofluid for an Electronic Liquid Cooling System[J],” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1501–1506, 2007. DOI: 10.1016/j.applthermaleng.2006.09.028.
  • Q. Li, Y. M. Xuan, J. Jiang, and J. W. Xu, “Experimental investigation on flow and convective heat transfer feature of a nanofluid for aerospace thermal management[J],” J. Astronaut., vol. 26, pp. 391–394, 2005.
  • W. Fan and F. Zhong, “Experimental study on thermal conductivity of kerosene-based nanofluids[J],” Thermochim Acta, vol. 712, pp. 179229, 2022. DOI: 10.1016/j.tca.2022.179229.
  • F. Q. Zhong, et al. “Heat transfer of aviation kerosene at supercritical conditions[J],” J. Thermophys. Heat Transf., vol. 23, no. 3, pp. 543–550, 2009. DOI: 10.2514/1.41619.
  • H. H. Ku, “Notes on the use of propagation of error formulas[J],” J Res Natl Inst Stand Technol, vol. 70C, no. 4, pp.263, 1966. DOI: 10.6028/jres.070C.025.
  • R. W. Allen and E. Eckert, “Friction and heat transfer measurements to turbulent pipe flow of water (Pr=7 and 8) at uniform wall heat flux,” J Heat Transfer, vol. 86, no. 3, pp.301–310, 1964. DOI: 10.1115/1.3688680.
  • E. N. Sieder, G. E. Tate, and H. Transfer, “Pressure drop of liquids in tubes[J],” Ind. Eng. Chem. Res., vol. 28, no. 12, pp.1429–1435, 1936. DOI: 10.1021/ie50324a027.
  • R. L. Zhang, et al. Researches on Heat Transfer Correlations of Hydrocarbon Fuel Under Supercritical Pressure[C]. AIAA/3af International Space Planes & Hypersonic Systems & Technologies Conference, 2012, Tours, France.
  • Y. M. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids[J],” ASME Journal of Heat Transfer, vol. 125, pp. 151–155, 2003. DOI: 10.1115/1.1532008.
  • D. S. Wen and Y. L. Ding, “Effect on heat transfer of particle migration in suspensions of nanoparticles flowing through minichannels[J],” Microfluidics Nanofluidics, vol. 1, no. 2, pp.183–189, 2005. DOI: 10.1007/s10404-004-0027-2.
  • S. Ferrouilliat, B. A. Ferro, J. A. Guass, J.-A. Gruss, and O. Soriano, “Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions,” Int. J. Heat Fluid Flow, vol. 32, pp. 424–439, 2011. DOI: 10.1016/j.ijheatfluidflow.2011.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.