Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 3
239
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical analysis of film cooling performance of a corrugated surface

, , &
Pages 271-293 | Received 28 Jun 2022, Accepted 12 Sep 2022, Published online: 22 Sep 2022

References

  • K. Singh, B. Premachandran, and M. R. Ravi, “Experimental and numerical studies on film cooling of a corrugated surface,” Appl. Therm. Eng., vol. 108, pp. 312–329, 2016. DOI:10.1016/j.applthermaleng.2016.07.093.
  • R. J. Goldstein, E. R. G. Eckert, and J. W. Ramsey, “Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole,” J. Eng. Gas Turbine Power, vol. 90, no. 4, pp. 384–393, 1968. DOI: 10.1115/1.3609223.
  • A. K. Sinha, D. G. Bogard, and M. E. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” J. Turbomach., vol. 113, no. 3, pp. 442–449, 1991. DOI: 10.1115/1.2927894.
  • M. Tyagi and S. Acharya, “Large eddy simulation of film cooling flow from an inclined cylindrical jet,” J. Turbomach., vol. 125, no. 4, pp. 734–742, 2003. DOI: 10.1115/1.1625397.
  • W. Peng and P. X. Jiang, “Experimental and numerical study of film cooling with internal coolant cross-flow effects,” Exp. Heat Transfer, vol. 25, no. 4, pp. 282–300, 2012. DOI: 10.1080/08916152.2011.609630.
  • L. Ye, C.-L. Liu, P.-X. Jiang, and Y.-H. Zhu, “Heat transfer characteristics in a trailing-edge slot cooling surface with outward protrusions,” Exp. Heat Transfer, pp. 1–20, 2022. DOI: 10.1080/08916152.2022.2083269.
  • E. Y. Jung, S. H. Oh, D. H. Lee, M. K. Kim, and H. H. Cho, “Effect of impingement jet on the full-coverage film cooling sysytem with double layered wall,” Exp. Heat Transfer, vol. 30, no. 6, pp. 544–562, 2017. DOI: 10.1080/08916152.2017.1328470.
  • R. J. Goldstein, E. R. G. Eckert, and F. Burggraf, “Effects of hole geometry and density on three-dimensional film cooling,” Int. J. Heat Mass Transf., vol. 17, no. 5, pp. 595–607, 1974. DOI: 10.1016/0017-9310(74)90007-6.
  • A. K. Singh, K. Singh, D. Singh, and N. Sahoo, “Large eddy simulations for film cooling assessment of cylindrical and laidback fan-shaped holes with reverse injection,” Int. J. Therm. Sci., vol. 13, no. 3, pp. 1–16, 2021. DOI: 10.1115/1.4048679.
  • R. A. Seban and L. H. Back, “Effectiveness and heat transfer for a turbulent boundary layer with tangential injection and variable free-stream velocity,” Int. J. Therm. Sci., vol. 84, no. 3, pp. 235–242, 1962. DOI: 10.1115/1.3684348.
  • S. Sivasegaram and J. H. Whitelaw, “Film cooling slots: the importance of lip thickness and injection angle,” J. Mech. Eng. Sc., vol. 11, no. 1, pp. 22–27, 1969. DOI: 10.1243/jmes_jour_1969_011_005_02.
  • S. C. Kacker and J. H. WHITELAW, “Effect of slot height and slot-turbulence intensity on effectiveness of uniform density, two-dimensional wall jet,” ASME-Paper 68-HT-4, pp. 4–10, 1968. DOI: 10.1115/1.3597544.
  • W. K. Burns and J. L. Stollery, “The influence of foreign gas injection and slot geometry on film cooling effectiveness,” Int. J. Turbo Jet Engines., vol. 12, no. 8, pp. 935–951, 1969. DOI: 10.1016/0017-9310(69)90156-2.
  • J. P. Hartnett, R. C. Birkebak, and E. R. G. Eckert, “Velocity distributions, temperature distributions, effectiveness and heat transfer for air injected through a tangential slot into a turbulent boundary layer,” J. Heat Transf., vol. 83, no. 3, pp. 293–305, 1961. DOI: 10.1115/1.3682263.
  • R. J. Goldstein and L. D. Stone, “Row-of-holes film cooling of curved walls at low injection angles,” J. Turbomach., vol. 119, no. 3, pp. 574–579, 1997. DOI: 10.1115/1.2841160.
  • R. E. Mayle, F. C. Kopper, M. F. Blair, and D. A. Bailey, “Effect of Streamline Curwature On Film Cooling,” J. Eng. Gas Turbines Power, vol. 99, no. 1, pp. 77–82, 1977. DOI: 10.1115/1.3446255.
  • S. G. Schwarz and E. R. G. Eckert. “The influence of curvature on film cooling Performance“ ASME-Gas Turbine and Aeroengine Congress and Exposition, June 11-14,1990. Brussels, Belgium.
  • J. R. Winka, J. B. Anderson, E. J. Boyd, D. G. Bogard, and M. E. Crawford, “Convex curvature effects on film cooling adiabatic effectiveness,“ ASME-Journal of Turbomachinery,” vol. 136, no. June, pp. 1–9, 2014. DOI: 10.1115/1.4025691.
  • M. K. Berhe and S. V. Patankar, “Curvature effects on discrete- hole film cooling,“ ASME-Journal of Turbomachinery,” 121, 781–791. October 1999 2017.
  • S. Yong, T. Xiao Ming, Z. Jing Zhou, and W. Yan Hua , “Film cooling experimental study on sinusoidal corrugated liner for afterburner,” International Journal of Turbo & Jet-Engines., vol. 37, no. 9, pp. 123–137, 2020. DOI: 10.1515/tjj-2017-0014.
  • K. Funazaki, T. Igarashi, Y. Koide, and K. Shinbo “Studies on cooling air ejected over a corrugated wall: its aerodynamic behavior and film effectiveness.” Proc ASME Turbo Expo, Vol. 3, 2001, pp. 1–12. DOI: 10.1115/2001-GT-0143.
  • K. Singh, B. Premachandran, and M. R. Ravi, “Effect of thermal barrier coating and gas radiation on film cooling of a corrugated surface,” J. Heat Trans., vol. 140, no. 9, pp. 1–5, 2018. DOI: 10.1115/1.4039761.
  • L. Qu, J. Zhang, X. Tan, and M. Wang, “Numerical investigation on adiabatic film cooling effectiveness and heat transfer coefficient for effusion cooling over a transverse corrugated surface,” Chinese J. Aeronaut., vol. 30, no. 2, pp. 677–684, 2017. DOI: 10.1016/j.cja.2017.02.012.
  • K. Singh, B. Premachandran, and M. R. Ravi, “Numerical investigation of film cooling on a 2D corrugated surface,” Numer. Heat Transf.; A: Appl., vol. 70, no. 11, pp. 1253–1270, 2016. DOI: 10.1080/10407782.2016.1230431.
  • C. Maass and U. Schumann, Numerical Simulation of Turbulent Flow over a Wavy Boundary, vol. 26, pp. 287–297. Fluid Mechanics and Its Applications. 1994. DOI: 10.1007/978-94-011-1000-6_25.
  • S. J. Kline and F. M, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • D. Singh, B. Premachandran, and S. Kohli, “Numerical simulation of the jet impingement cooling of a circular cylinder,” Numerical Heat Transfer; Part A: Applications, vol. 64, no. 2, pp. 153–185, 2013. DOI: 10.1080/10407782.2013.772869.
  • D. Singh, B. Premachandran, and S. Kohli, “Double circular air jet impingement cooling of a heated circular cylinder,” Int. J. Heat Mass Transf., vol. 109, pp. 619–646, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.02.035.
  • K. A. Ganatra and D. Singh, “Numerical Investigation of effect of semi-circular confinement bottom opening angle for slot jet impingement cooling on heated cylinder, ”Int. J. Therm. Sci., 149, 106148, June 2018 2020. DOI: 10.1016/j.ijthermalsci.2019.106148
  • J. Issac, D. Singh, and S. Kango, “Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate,” Heat Mass Transf., vol. 56, no. 2, pp. 531–546, 2020. DOI: 10.1007/s00231-019-02724-9.
  • A. Ganatra and D. Singh, “Comparison of various RANS models for impinging round jet cooling from a cylinder,” J. Heat Transf., vol. 141, no. 6, 2019. DOI:10.1115/1.4043304
  • D. Singh, S. Udayraj, A. N, and H. Jishnu, “Experimental and LES study of unconfined jet impingement on a smooth flat heated plate with slots of different widths,” Exp. Heat Transf., pp. 1–40, 2022. DOI: 10.1080/08916152.2022.2096153.
  • ANSYS Fluent-2020R1 User Guide. Canonsburg, 2020.
  • Z. Tu, J. Mao, and X. Han, “Numerical Study of Film Cooling over a Flat Plate with Anisotropic Thermal Conductivity,” Appl. Therm. Eng., vol. 111, pp. 968–980, 2017. DOI:10.1016/j.applthermaleng.2016.09.170.
  • S. Turns. Cambridge University Press, New York, NY, 2006. Thermal Fluid Science-An Integral Approach.
  • K. Singh, B. Premachandran, and M. R. Ravi, “A numerical study on the 2D film cooling of a flat surface,” Num. Heat Transf.; Part A: Appl., vol. 67, no. 6, pp. 673–695, 2015. DOI: 10.1080/10407782.2014.949131.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Washington,DC.: CRC Press. 1990.
  • K. Singh, B. P. M. R. Ravi, and M. R. Ravi, “Experimental assessment of film cooling performance of short cylindrical holes on a flat surface,” Heat Mass Transf., vol. 52, no. 12, pp. 2849–2862, 2016. DOI: 10.1007/s00231-016-1777-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.