Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 3
87
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Study of Thermohydraulic Performance of Solar Air Heater Having Multiple Open Trapezoidal Rib Roughnesses

, , &
Pages 313-333 | Received 08 Aug 2022, Accepted 17 Oct 2022, Published online: 09 Nov 2022

References

  • I. Singh and S. Singh, “A review of artificial roughness geometries employed in solar air heaters,” Renew Sustain Energy. Rev, vol. 92, pp. 405–425, 2018. DOI: 10.1016/j.rser.2018.04.108.
  • T. Alam and M.-H. Kim, “A critical review on artificial roughness provided in rectangular solar air heater duct,” Renew Sustain Energy. Rev, vol. 69, pp. 387–400, 2017. DOI: 10.1016/j.rser.2016.11.192.
  • T. Alam and M.-H. Kim, “Performance improvement of double-pass solar air heater–A state of art of review,” Renew Sustain Energy. Rev, vol. 79, pp. 779–793, 2017. DOI: 10.1016/j.rser.2017.05.087.
  • T. Alam and M.-H. Kim, “A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications,” Renew Sustain Energy. Rev, vol. 81, pp. 813–839, 2018. DOI: 10.1016/j.rser.2017.08.060.
  • V. Singh Bisht, A. Kumar Patil, and A. Gupta, “Review and performance evaluation of roughened solar air heaters,” Renew Sustain Energy. Rev, vol. 81, pp. 954–977, 2018. DOI:10.1016/j.rser.2017.08.036.
  • A. K. Patil, J. S. Saini, and K. Kumar, “A comprehensive review on roughness geometries and investigation techniques used in artificially roughened solar air heaters,” Int. J. Renew Energy Res, vol. 2, pp. 1–15, 2012. DOI:10.1234/ijrer.v2i1.104.
  • A. E. Kabeel, M. H. Hamed, Z. M. Omara, and A. W. Kandeal, “Solar air heaters: design configurations, improvement methods and applications – a detailed review,” Renew Sustain Energy. Rev, vol. 70, pp. 1189–1206, 2017. DOI:10.1016/j.rser.2016.12.021.
  • H. S. Arunkumar, K. Vasudeva Karanth, and S. Kumar, “Review on the design modifications of a solar air heater for improvement in the thermal performance,” Sustain Energy Technol. Assessments, vol. 39, pp. 100685, 2020. DOI:10.1016/j.seta.2020.100685.
  • S. Panda and R. Kumar, “A review on effect of various artificial roughness on heat transfer enhancement in a channel flow,” J. Therm. Eng, vol. 7, pp. 1267–1301, 2021. DOI: 10.18186/thermal.978149.
  • G. Bharadwaj, K. Sharma, and K. Mausam, “Factors influencing the performance of solar air heater (SAH) having artificial coarseness: a review,” J. Therm. Eng, vol. 7, pp. 1556–1576, 2021. DOI:10.18186/thermal.991100.
  • C. W. Leung, T. T. Wong, and S. D. Probert, “Enhanced forced-convection from ribbed or machine-roughened inner surfaces within triangular ducts, Appl,” Energy, vol. 69, pp. 2; 87e99, 2001. DOI:10.1016/S0306-2619(01)00002-2.
  • S. K. Jain, G. D. Agrawal, and R. Misra, “Heat transfer augmentation using multiple gaps in arc-shaped ribs roughened solar air heater: an experimental study, energy sources, Part A recovery, util,” Environ. Eff, vol. 43, no. 24, pp. 3345–3356, 2019.
  • R. Kumar, A. S. Kashyap, P. Singh, V. Goel, and K. Kumar, “innovatively arranged curved-ribbed solar-assisted air heater: performance and correlation development for heat and flow characteristics,” J. Sol. Energy Eng, vol. 142, no. 3, pp. 031011, 2020. DOI: 10.1115/1.4045827.
  • L. M. Wright, W. L. Fu, and J. C. Han, “Thermal performance of angled, V-shaped and W-shaped rib turbulators in rotating rectangular cooling channels (AR = 4:1),” Transactions of ASME, vol. 126, pp. 604–614, 2004.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, “Augmented heat transfer in square channel with parallel, crossed and V-shaped angled ribs,” J Heat Transfer, vol. 113, pp. 590–596, 1991. DOI: 10.1115/1.2910606.
  • A.-M. Ebrahim Momin, J. Saini, and S. Solanki, “Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate,” Int. J. Heat Mass Transfer, vol. 45, no. 16, pp.3383–3396, 2002. DOI: 10.1016/S0017-9310(02)00046-7.
  • A. Kumar, R. P. Saini, and J. S. Saini, “Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi V-shaped rib with gap roughness on the heated plate,” Solar Energy, vol. 86, no. 6, pp.1733–1749, 2012. DOI: 10.1016/j.solener.2012.03.014.
  • D. Gupta, S. C. Solanki, and J. S. Saini, “Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates,” Solar Energy, vol. 51, no. 1, pp.31–37, 1993. DOI: 10.1016/0038-092X(93)90039-Q.
  • O. N. Sara, T. Pekdemir, S. Yapici, and M. Yilmaz, “Heat-transfer enhancement in a channel flow with perforated rectangular blocks,” Heat Fluid Flow, vol. 22, pp. 509–518, 2001. DOI:10.1016/S0142-727X(01)00117-5.
  • T. Alam, R. P. Saini, and J. S. Saini, “Experimental investigation on heat transfer enhancement due to V-shaped perforated blocks in a rectangular duct of solar air heater,” Energy Convers Manag, vol. 81, pp. 374–383, 2014. DOI: 10.1016/j.enconman.2014.02.044.
  • A. Tariq, P. K. Panigrahi, and K. Muralidhar, “Flow and heat transfer in the wake of a surface-mounted rib with a slit,” Experiments Fluids, vol. 37, pp. 701–719, 2004. DOI: 10.1007/s00348-004-0861-8.
  • D. J. Dezan, A. D. Rocha, and W. G. Ferreira, “Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators,” Appl. Energy, vol. 263, pp. 114556, 2020. DOI:10.1016/j.apenergy.2020.114556.
  • Y. M. Patel, S. V. Jain, and V. J. Lakhera, “Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs,” Appl. Therm. Eng., vol. 170, pp. 114940, 2020. DOI:10.1016/j.applthermaleng.2020.114940.
  • N. F. Jouybari and T. S. Lundström, “Performance improvement of a solar air heater by covering the absorber plate with a thin porous material,” Energy, vol. 190, 2020. DOI: 10.1016/j.energy.2019.116437.
  • A. Kumar and A. Layek, “Nusselt number and friction characteristics of a solar air heater that has a winglet type vortex generator in the absorber surface,” Exp. Therm. Fluid Sci, vol. 119, pp. 110204, 2020. DOI:10.1016/j.expthermflusci.2020.110204.
  • R. Misra, et al. “Prediction of behavior of triangular solar air heater duct using V-down rib with multiple gaps and turbulence promoters as artificial roughness: a CFD analysis.” Int. J. Heat Mass Transf, 162, 120376, 2020.
  • K. D. Yadav and R. K. Prasad, “Performance analysis of parallel flow flat plate solar air heater having arc shaped wire roughened absorber plate,” Renewable Energy Focus, vol. 32, pp. 23–44, 2020. DOI: 10.1016/j.ref.2019.10.002.
  • C. Sivakandhan, T. V. Arjunan, and M. M. Matheswaran, “Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness,” Renew Energy, vol. 147, pp. 2345–2357, 2020. DOI:10.1016/j.renene.2019.10.007.
  • D. Wang, et al., “Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap,” Sol Energy, vol. 195, pp. 89–101, 2020. DOI: 10.1016/j.solener.2019.11.034.
  • K. H. Ghritlahre, P. Kumar, and S. Chand, “Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – an experimental study,” Sol Energy, vol. 199, pp. 173–182, 2020. DOI:10.1016/j.solener.2020.01.068.
  • V. S. Hans, R. P. Saini, and J. S. Saini, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs,” Sol Energy, vol. 84, pp. 898–911, 2010. DOI: 10.1016/j.solener.2010.02.004.
  • A. Kumar, R. P. Saini, and J. S. Saini, “Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi-V-shaped with gap rib as arti fi cial roughness,” Renew Energy, vol. 58, pp. 151–163, 2013. DOI: 10.1016/j.renene.2013.03.013.
  • V. S. Hans, R. S. Gill, and S. Singh, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs,” Exp. Thermal Fluid Sci, 2016. DOI: 10.1016/j.expthermflusci.2016.07.022.
  • V. Kumar and R. Murmu, “Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct,” Renew Energy, vol. 172, pp. 1365–1392, 2021. DOI: 10.1016/j.renene.2020.11.150.
  • R. Kumar, V. Goel, S. Bhattacharyya, V. V. A. Tyagi, and A. M, “Experimental investigation for heat and flow characteristics of solar air heater having symmetrical gaps in multiple-arc rib pattern as roughness elements,” Exp. Heat Transfer, vol. 35: 4, pp. 466–483, 2022. DOI:10.1080/08916152.2021.1905752.
  • H. Singh, T. Alam, M. I. H. Siddiqui, M. A. Ali, and D. Sagar, “Experimental investigation of heat transfer augmentation due to obstacles mounted in solar air heater duct,” Exp. Heat Transfer, pp. 01–20, 2022. DOI: 10.1080/08916152.2022.2108166.
  • A. Kumar and A. Layek, “Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs,” Exp. Heat Transfer, vol. 35, pp. 3; 239–257, 2020. DOI:10.1080/08916152.2022.2108166.
  • V. P. Singh, S. Jain, and J. M. L. Gupta, “Performance assessment of double-pass parallel flow solar air heater with perforated multi-V ribs roughness — part B,” Exp. Heat Transfer, pp. 01–18, 2022. DOI: 10.1080/08916152.2021.2019147.
  • V. P. Singh, S. Jain, and J. M. L. Gupta, “Analysis of the effect of perforation in multi-v rib artificial roughened single pass solar air heater: - Part A,” Exp. Heat Transfer, pp. 01–20, 2021. DOI: 10.1080/08916152.2021.1988761.
  • M. K. Aliabadi, I. Rahmani, and J. A. Esfahani, “Influences of twisted turbulators arrangements on heat transfer and airflow resistance over absorber plate of solar air heater,” Exp. Heat Transfer, pp. 01–23, 2022. DOI: 10.1080/08916152.2022.2105986.
  • A. Choudhary, M. Kumar, A. K. Patil, and S. Chamoli, “Enhanced thermal and fluid flow performance of cross flow tube bank with perforated splitter plate,” Exp. Heat Transfer, vol. 34, no. 4, pp. 329–341, 2021. DOI: 10.1080/08916152.2020.1749190.
  • S. Ashrae, 93-97. Method of Testing to Determine the Thermal Performance of Solar. New York: Refrigeration and Air Conditioning Engineering, 1977.
  • J. P. Holman, Experimental Methods for Engineers. New Delhi: Tata McGraw-Hill, 2004.
  • W. M. Rosenhow and J. P. Hartnett, Hand Book of Heat Transfer. New York: McGraw Hill, 1973.
  • S. Kakac, R. K. Shah, and W. Aung, Hand Book of Single-Phase Convective Heat Transfer. New York: Wiley, 1987.
  • M. E. Taslim, T. Li, and D. M. Kercher, “Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls,” J. Turbomach, vol. 118, pp. 20–28, 1996. DOI: 10.1115/1.2836602.
  • M. J. Lewis, “Optimising the thermohydraulic performance of rough surfaces,” Int. J. Heat Mass Transfer, vol. 18, pp. 1243–1248, 1975. DOI: 10.1016/0017-9310(75)90232-X.
  • S. K. Verma and B. N. Prasad, “Investigation for the optimal thermo-hydraulic performance of artificially roughened solar air heaters,” Renew. Energy, vol. 20, pp. 19–36, 2000. DOI: 10.1016/S0960-1481(99)00081-6.
  • K. R. Aharwal, B. K. Gandhi, and J. S. Saini, “Heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate,” Int. J. Heat Mass Transf, vol. 52, pp. 5970–5977, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.05.032.
  • S. Singh, S. Chander, and J. S. Saini, “Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs,” Energy, vol. 36, pp. 5053–5064, 2011. DOI: 10.1016/j.energy.2011.05.052.
  • R. Maithani and J. S. Saini, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps,” Exp. Therm. Fluid Sci, vol. 70, pp. 220–227, 2016. DOI: 10.1016/j.expthermflusci.2015.09.010.
  • A. M. Lanjewar, J. L. Bhagoria, R. M. Sarviya, A. M. Lanjewar, and L. Bhagoria, “Performance analysis of W-shaped rib roughened solar air heater,” J. Renew. Sustain. Energy, vol. 3, pp. 043110, 2011. DOI: 10.1063/1.3595740.
  • A. Kumar, J. L. Bhagoria, and R. M. Sarviya, “Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs,” Energy Convers. Manag, vol. 50, pp. 2106–2117, 2009. DOI: 10.1016/j.enconman.2009.01.025.
  • S. K. Saini and R. P. Saini, “Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness,” Sol. Energy, vol. 82, pp. 1118–1130, 2008. DOI: 10.1016/j.solener.2008.05.010.
  • A. P. Singh and S. Varun, “Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters,” Exp. Therm. Fluid Sci, vol. 54, pp. 117–126, 2014. DOI: 10.1016/j.expthermflusci.2014.02.004.
  • N. K. Pandey and V. K. Bajpai, “Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater,” Sol. Energy, vol. 134, pp. 314–326, 2016. DOI: 10.1016/j.solener.2016.05.007.
  • A. Layek, J. S. Saini, and S. C. Solanki, “Heat transfer and friction characteristics for artificially roughened ducts with compound turbulators,” Int. J. Heat Mass Transf, vol. 50, pp. 4845–4854, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.042.
  • S. Yadav, M. Kaushal, and S. Varun, “Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate,” Exp. Therm. Fluid Sci, vol. 44, pp. 34–41, 2013. DOI: 10.1016/j.expthermflusci.2012.05.011.
  • M. Sethi and N. S. Thakur, “Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate,” Sol. Energy, vol. 86, pp. 2852–2861, 2012. DOI: 10.1016/j.solener.2012.06.024.
  • R. P. Saini and J. S. Saini, “Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element,” Int. J. Heat Mass Transf, vol. 40, pp. 973–986, 1997. DOI: 10.1016/0017-9310(96)00019-1.
  • J. L. Bhagoria, J. S. Saini, and S. C. Solanki, “Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate,” Renew. Energy, vol. 25, pp. 341–369, 2002. DOI: 10.1016/S0960-1481(01)00057-X.
  • S. V. Karmare and A. N. Tikekar, “Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs,” Int. J. Heat Mass Transf, vol. 50, pp. 4342–4351, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.065.
  • V. B. Gawande, A. S. Dhoble, D. B. Zodpe, and S. Chamoli, “Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs,” Sol. Energy, vol. 131, pp. 275–295, 2016. DOI: 10.1016/j.solener.2016.02.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.