Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 4
97
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation of The Influence of Modifying the Inner Tube Outer Surface on Free Convection in A Concentrated Double Pipe

, , &
Pages 335-355 | Received 31 May 2022, Accepted 27 Oct 2022, Published online: 06 Nov 2022

References

  • L. Tadrist, H. Combeau, M. Zamoum, and M. Kessal, “Experimental study of heat transfer at the transition regime between the natural convection and nucleate boiling: influence of the heated wall tilt angle on the onset of nucleate boiling (ONB) and natural convection (ONC,” Int J Heat Mass Transf, vol. 151, pp. 119388, 2020. DOI:10.1016/j.ijheatmasstransfer.2020.119388.
  • K. M. Kim, D. H. Nguyen, G. H. Shim, D. W. Jerng, and H. S. Ahn, “Experimental study of turbulent air natural convection in open-ended vertical parallel plates under asymmetric heating conditions,” Int J Heat Mass Transf, vol. 159, pp. 120135, 2020. DOI:10.1016/j.ijheatmasstransfer.2020.120135.
  • Y. Shah, S. Abbas, C. H. Kim, and N. H. Kim, “Two-phase refrigerant distribution in a two-row/six-pass mini-channel aluminum evaporator,” Exp. Heat Transfer, vol. 35, no. 1, pp. 79–98, 2022. DOI: 10.1080/08916152.2020.1820627.
  • R. Wan, Z. Liu, H. Wu, and Q. Cheng, “Air-side flow and heat transfer characteristics research and empirical correlations of wavy fins in negative gauge pressure environment,” Exp. Heat Transfer, pp. 1–17, 2022. DOI: 10.1080/08916152.2022.2040654.
  • A. Berber, M. Gürdal, and M. Yetimoğlu, “Experimental study on the heat transfer enhancement in a rectangular channel with curved winglets,” Exp. Heat Transfer, vol. 35, no. 6, pp. 797–817, 2022. DOI: 10.1080/08916152.2021.1951897.
  • C. Yadav and R. R. Sahoo, “Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system,” Exp. Heat Transfer, vol. 34, no. 4, pp. 356–375, 2021. DOI: 10.1080/08916152.2020.1751744.
  • E. I. Eid, “Experimental study of free convection in an elliptical annular enclosure in blunt and slender orientations,” Heat Mass Transf., vol. 47, no. 1, pp. 81–91, 2011. DOI: 10.1007/s00231-010-0678-3.
  • E. I. Eid, M. Abdel-Halim, and A. S. Easa, “Effect of opposed eccentricity on free convective heat transfer through elliptical annulus enclosures in blunt and slender orientations,” Heat Mass Transf., vol. 51, no. 2, pp. 239–250, 2015. DOI: 10.1007/s00231-014-1408-z.
  • F. M. Mahfouz, “Numerical simulation of free convection within an eccentric annulus filled with micropolar fluid using spectral method,” Appl. Math. Comput., vol. 219, pp. 5397–5409, 2013. DOI:10.1016/j.amc.2012.11.038.
  • L. J. Habeeb and A. Mohammed, “Natural Convection Heat Transfer in Horizontal Annuli with Inner Elliptic and Circular Cylinder,“ Journal of Mechanical Engineering Research and Developments, vol. 43, pp. 340–255, 2020.
  • J. R. Senapati, S. K. Dash, and S. Roy, “Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder,” Int J Heat Mass Transf, vol. 96, pp. 330–345, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.01.024.
  • J. R. Senapati, S. K. Dash, and S. Roy, “Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins,” Int. J. Therm. Sci., vol. 111, pp. 146–159, 2017. DOI:10.1016/j.ijthermalsci.2016.08.019.
  • H. Laidoudi and M. Helmaoui, “Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder,” J. Nav. Archit. Mar. Eng., vol. 17, no. 2, pp. 89–99, 2020. DOI: 10.3329/jname.v17i2.44991.
  • H. Laidoudi, “The role of concave walls of inner cylinder on natural convection in annular space,” Acta Mech., vol. 3, no. 2, pp. 24–28, 2020. DOI: 10.26480/amm.02.2020.24.28.
  • H. Laidoudi, “Buoyancy-driven flow in annular space from Two circular cylinders in tandem arrangement,” Metall. Mater. Eng., vol. 26, no. 1, pp. 87–102, 2020. DOI: 10.30544/481.
  • H. Abou-Ziyan, A. Kalender, M. Shedid, and H. Abdel-Hameed, “Experimental investigation of free convection from short horizontal cylinder to Newtonian and power-law liquids of large Prandtl numbers,” Exp. Therm. Fluid. Sci., vol. 86, pp. 102–116, 2017. DOI:10.1016/j.expthermflusci.2017.04.004.
  • Ammar S. Easa, Wael M. El-Maghlany, Mohamed M. Hassan, and Mohamed T. Tolan. “The performance of a gamma-type stirling water dispenser with twin wavy plate heat exchangers,” Case Studies in Thermal Engineering, vol. 39, 2022. DOI: 10.1016/j.csite.2022.102464.
  • M. Amani, et al., “Latest developments in nanofluid flow and heat transfer between parallel surfaces: a critical review,” Adv. Colloid Interface Sci., vol. 294, pp. 102450, 2021. DOI:10.1016/j.cis.2021.102450.
  • P. Zhang, X. Zhang, J. Deng, and L. Song, “A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method,” Int J Heat Mass Transf, vol. 99, pp. 721–737, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.04.011.
  • T. Tayebi, A. J. Chamkha, A. A. Melaibari, and E. Raouache, “Effect of internal heat generation or absorption on conjugate thermal-free convection of a suspension of hybrid nanofluid in a partitioned circular annulus,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105397, 2021. DOI:10.1016/j.icheatmasstransfer.2021.105397.
  • A. Nouri-Borujerdi and M. E. Nakhchi, “Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: review and experiments,” Appl. Therm. Eng., vol. 120, pp. 257–268, 2017. DOI:10.1016/j.applthermaleng.2017.03.095.
  • F. Khanmohammadi, M. Farhadi, and A. Ali Rabienataj Darzi, “Numerical investigation of heat transfer and fluid flow characteristics inside tube with internally star fins,” Heat Mass Transf., vol. 55, no. 7, pp. 1901–1911, 2019. DOI: 10.1007/s00231-018-2454-8.
  • M. Cianfrini, M. Corcione, and A. Quintino, “Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 4055–4063, 2011. DOI: 10.1016/j.applthermaleng.2011.08.010.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transf. A Appl., vol. 71, no. 11, pp. 1159–1173, 2017. DOI: 10.1080/10407782.2017.1337990.
  • M. Miansari, M. A. Valipour, H. Arasteh, and D. Toghraie, “Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design,” J Therm Anal Calorim, vol. 139, no. 5, pp. 3151–3164, 2020. DOI: 10.1007/s10973-019-08653-3.
  • A. Shaija and G. S. V. L. Narasimham, “Effect of surface radiation on conjugate natural convection in a horizontal annulus driven by inner heat generating solid cylinder,” Int J Heat Mass Transf, vol. 52, no. 25–26, pp. 5759–5769, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.05.033.
  • X. Yuan, F. Tavakkoli, and K. Vafai, “Analysis of natural convection in horizontal concentric annuli of varying inner shape,” Numer. Heat Transf. A Appl., vol. 68, no. 11, pp. 1155–1174, 2015. DOI: 10.1080/10407782.2015.1032016.
  • Y. Cao and Y. Zhang, “Investigation on the natural convection in horizontal concentric annulus using the variable property-based lattice Boltzmann flux solver,” Int J Heat Mass Transf, vol. 111, pp. 1260–1271, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.04.071.
  • J. Zeng, S. Zhang, Y. Tang, Y. Sun, and W. Yuan, “Flow boiling characteristics of micro-grooved channels with reentrant cavity array at different operational conditions,” Int J Heat Mass Transf, vol. 114, pp. 1001–1012, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.06.128.
  • J. Chen and W. Li, “Local convective condensation heat transfer in horizontal double-layer three-dimensional dimple-grooved tubes,” Int J Heat Mass Transf, vol. 127, pp. 810–820, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.07.131.
  • A. Nouri-Borujerdi and M. E. Nakhchi, “Optimization of the heat transfer coefficient and pressure drop of Taylor-Couette-Poiseuille flows between an inner rotating cylinder and an outer grooved stationary cylinder,” Int J Heat Mass Transf, vol. 108, pp. 1449–1459, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.01.014.
  • D. Graham, C. Chato, and A. Newelll, “Heat transfer and pressure drop during condensation of refrigerant 023a in an axially grooved tube”, n.d.
  • T. Yazdanipour, F. Shahraki, and D. Mohebbi-Kalhori, “Combined convective loss from a bicylindrical cavity receiver under wind condition: an experimental study,” Exp. Heat Transfer, vol. 35, no. 4, pp. 440–454, 2021. DOI: 10.1080/08916152.2021.1890280.
  • A. V. Gorasiya and R. P. Vedular, “Heat transfer characteristics of jet impingement onto the concave surface of a cone,” Exp. Heat Transfer, pp. 1–25, 2022. DOI: 10.1080/08916152.2022.2126029.
  • A. K. Singh, K. Singh, D. Singh, and N. Sahoo, “Experimental and numerical analysis of film cooling performance of a corrugated surface,” Exp. Heat Transfer, pp. 1–23, 2022. DOI: 10.1080/08916152.2022.2126031.
  • E. I. Eid, R. A. Khalaf-Allah, A. M. Soliman, and A. S. Easa, “Performance of a beta Stirling refrigerator with tubular evaporator and condenser having inserted twisted tapes and driven by a solar energy heat engine,” Renew. Energy, vol. 135, pp. 1314–1326, 2019. DOI:10.1016/j.renene.2018.09.044.
  • A. S. Easa, R. A. Khalaf-Allah, M. T. Tolan, and S. M. Mohamed, “Numerical and Experimental Study of an Alpha-Type Stirling Water Dispenser,” Arab. J. Sci. Eng., 2021. DOI: 10.1007/s13369-021-06289-w.
  • F. Mashali, F. Alkhaldi, and G. Mirshekari, “Nanodiamond Colloids heat transfer behavior in electronics thermal management – an experimental study,” Exp. Heat Transfer, vol. 35, no. 6, pp. 780–796, 2021. DOI: 10.1080/08916152.2021.1947418.
  • E. I. Eid, R. A. Khalaf-Allah, A. I. Albadry, and A. S. Easa, “Beta Stirling refrigerator performance using a tubular heat exchanger with elliptical tube layouts and a cylinder with different bores,” J Therm Anal Calorim, 2021. DOI: 10.1007/s10973-021-11021-9.
  • A. Saxena, V. Kishor, A. Srivastava, and S. Singh, “Whole field measurements to identify the critical Rayleigh number for the onset of natural convection in top open cavity,” Exp. Heat Transfer, vol. 33, no. 2, pp. 123–140, 2019. DOI: 10.1080/08916152.2019.1586800.
  • R. A. Khalaf-Allah, G. B. Abdelaziz, M. G. Kandel, and A. S. Easa, “Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions,” Renew. Energy, vol. 190, pp. 1041–1054, 2022. DOI:10.1016/J.RENENE.2022.04.019.
  • A. S. Easa, R. A. Khalaf-Allah, A. A. Al-Nagdy, M. T. Tolan, and S. M. Mohamed, “Experimental study of saving energy and improving Stirling water dispenser performance using the waste heat of both pistons friction,” Appl. Therm. Eng., vol. 213, pp. 118727, 2022. DOI:10.1016/J.APPLTHERMALENG.2022.118727.
  • A. S. Easa, W. M. El-Maghlany, M. M. Hassan, and M. T. Tolan, “The performance of a gamma-type stirling water dispenser with twin wavy plate heat exchangers,” Case Stud. Therm. Eng., vol. 39, pp. 102464, 2022. DOI:10.1016/J.CSITE.2022.102464.
  • D. R. Karana and R. R. Sahoo, “An experimental study on the thermal behavior of aluminum thermoelectric system integrated with engine exhaust,” Exp. Heat Transfer, vol. 34, no. 3, pp. 201–216, 2020. DOI: 10.1080/08916152.2020.1730525.
  • Y. Zhang, et al., “Investigation of the condensation heat-transfer between the wet air and 3-D finned-tube heat exchanger surface with different anti-corrosion coatings,” Exp. Heat Transfer, vol. 35, no. 4, pp. 399–418, 2021. DOI: 10.1080/08916152.2021.1877371.
  • C. J. Ho, Y. H. Lin, and T. C. Chen, “A numerical study of natural convection in concentric and eccentric horizontal cylindrical annuli with mixed boundary conditions,” Int. J .Heat Fluid Flow, vol. 10, no. 1, pp. 40–47, 1989. DOI: 10.1016/0142-727X(89)90053-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.