Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 4
256
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of metal foam thickness on the conduction and convection heat transfer for a flat plate with metal foam impinged by multiple jets

, &
Pages 367-388 | Received 31 Jul 2022, Accepted 27 Oct 2022, Published online: 11 Nov 2022

References

  • R. J. Goldstein and J. F. Timmers, “Visualization of heat transfer from arrays of impinging jets,” Int. J. Heat Mass Transfer, vol. 25, no. 12, pp. 1857–1868, 1982. DOI: 10.1016/0017-9310(82)90108-9.
  • N. T. Obot and T. A. Trabold, “Impingement heat transfer with arrays of circular jets: part 1-Effects of minimum, intermediate, and complete cross-flow for small and large spacings,” J. Heat. Transfer, vol. 109, no. 4, pp. 872–879, 1987. DOI: 10.1115/1.3248197.
  • S. V. Garimella and V. P. Schroeder, “Local heat transfer distributions in confined multiple air jet impingements,” J. Electronic Packaging, vol. 123, no. 3, pp. 165–172, 2001. DOI: 10.1115/1.1371923.
  • L. F. G. Geers, M. J. Tummers, T. J. Bueninck, and K. Hanjalic, “Heat transfer correlation for hexagonal and inline arrays of impinging jets,” Int. J. Heat and Mass Transfer, vol. 51, no. 21–22, pp. 5389–5399, 2008. DOI: 10.1115/1.1371923.
  • V. K. Vadiraj and S. V. Prabhu, “Influence of spanwise pitch on local heat transfer for multiple jets with crossflow,” J. Thermophysics. and Heat Transfer., vol. 22, no. 4, pp. 654–668, 2008. DOI: 10.2514/1.35737.
  • K. Kanokjaruvijit and R. F. Martinez-Botas, “Heat transfer and pressure investigation of dimple impingement,” J. Turbomachinery, vol. 130, no. 1, pp. 1–11, 2008. DOI: 10.1115/1.2220048.
  • R. Vinze, et al., “Effect of dimple pitch and depth on jet impingement heat transfer over dimpled surface impinged by multiple jets,” Int. J. Thermal Sciences, vol. 145, pp. 105974, 2019. DOI:10.1016/j.ijthermalsci.2019.105974.
  • S. Ndao, H. J. Lee, Y. Peles, and M. K. Jensen, “Heat transfer enhancement from micro pin fins subjected to an impinging jet,” Int. J. Heat Mass Transfer, vol. 55, no. 1–3, pp. 413–421, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.09.037.
  • L. A. Brignoni and S. V. Garimella, “Experimental optimization of confined air jet impingement on a pin fin heat sink,” IEEE Transactions on Components and Packaging Technologies, vol. 22, no. 3, pp. 399–404, 1999. DOI: 10.1109/6144.796542.
  • R. Maithani, A. Kumar, G. Raghav, M. Nagpal, and B. Kumar, “Mohit Nagpal and Bipin Kumar “Thermal analysis of jet impingement on hemispherical protrusion on heated surface,” Exp.Heat Transfer, vol. 34, no. 7, pp. 662–677, 2020. DOI: 10.1080/08916152.2020.1808117.
  • W. H. Hsieh, J. Y. Wu, W. H. Shih, and W. C. Chiu, “Experimental investigation of heat transfer characteristics of aluminium foam heat sinks,” Int, J. Heat Mass Transfer, vol. 47, no. 23, pp. 5149–5157, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.04.037.
  • W. H. Shih, W. C. Chiu, and W. H. Hsieh, “Height effect on heat transfer characteristics of aluminium foam heat sinks,” ASME J.Heat Transfer, vol. 128, no. 6, pp. 530–537, 2006. DOI: 10.1115/1.2188461.
  • T. M. Jeng and S. C. Tzeng, “Experimental study of forced convection in metallic porous block subject to a confined slot jet,” Int. J. Thermal Sciences, vol. 46, no. 12, pp. 1242–1250, 2007. DOI: 10.1016/j.ijthermalsci.2007.01.007.
  • K. C. Wong, “Thermal analysis of a metal foam subject to jet impingement,” Int. Communications in Heat and Mass Transfer, vol. 39, no. 7, pp. 960–965, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.021.
  • C. Byon, “Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power,” Int. J. Heat and Mass Transfer, vol. 84, pp. 1056–1060, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.025.
  • S. Kumar and A. Pattamatta, “Assessment of heat transfer enhancement using metallic porous foam configurations in laminar slot jet impingement: an experimental study,” J. Heat. Transfer, vol. 140, no. 2, pp. 1–10, 2018. DOI: 10.1115/1.4037540.
  • K. Yogi, M. Godase, M. Shetty, K. Shankar, and S. V. Prabhu, “Experimental investigation on the local heat transfer with a circular jet impinging on a metal foamed flat plate,” Int J Heat Mass Transf, vol. 162, pp. 120405, 2020. DOI:10.1016/j.ijheatmasstransfer.2020.120405.
  • K. Yogi, K. Shankar, and S. V. Prabhu, “Experimental investigation on the local heat transfer with an unconfined slot jet impinging on a metal foamed flat plate,” Int. J. Thermal Sciences, vol. 169, pp. 107065, 2021. DOI:10.1016/j.ijthermalsci.2021.107065.
  • P. Singh, K. Nithyanandam, M. Zhang, and R. L. Mahajan, “The effect of metal foam thickness on jet array impingement heat transfer in high porosity aluminum foams” ASME,” J. Heat. Transfer, vol. 142, no. 5, pp. 052301, 2020. DOI: 10.1115/1.4045640.
  • S. Madhavan, P. Singh, and S. Ekkad, “Jet impingement heat transfer enhancement by packing high- porosity thin metal foams between jet exit plane and target surface, ASME,” J. of Thermal Science and Engineering Applications, vol. 11, no. 6, pp. 061016, 2019. DOI: 10.1115/1.4043470.
  • S. Y. Kim, M. H. Lee, and K. S. Lee, “Heat removal by aluminum-foam heat sinks in a multi-air jet impingement,” IEEE Trans. Compon. Packaging Technol, vol. 28, no. 1, pp. 142–148, 2005. DOI: 10.1109/tcapt.2004.843169.
  • P. Singh, M. Zhang, J. Pandit, and R. L. Mahajan, 2019, Array Jet Impingement onto High Porosity Thin Metal Foams at Zero jet-to-foam Spacing, ASME International Mechanical Engineering Congress and Exposition: Pittsburgh, PA. Nov V08BT10A020
  • V. S. Sambamurthy, S. Madhavan, P. Singh, and S. Ekkad, “Array jet impingement on high porosity thin metal foams: effect of foam height, pore-density and spent air crossflow scheme on flow distribution and heat transfer, ASME,” J. of Heat Transfer, vol. 142, no. 11, pp. 112301, 2020. DOI: 10.1115/1.4047560.
  • V. P. Rajamuthu, S. S. Panse, and S. Ekkad, “Heat transfer enhancement through array jet impingement on strategically placed high porosity high pore-density thin copper foams,” ASME J. of Electronic Packaging, vol. 143, no. 3, pp. 031003, 2021. DOI: 10.1115/1.4049173.
  • K. Yogi, K. Shankar, and S. V. Prabhu, “Separation of conduction and convection heat transfer effects for a metal foamed flat plate impinge d by a circular jet,” Int. J. of Heat and Mass Transfer, vol. 185, pp. 122387, 2022. DOI:10.1016/j.ijheatmasstransfer.2021.122387.
  • K. Yogi, K. Shankar, and S. V. Prabhu, “Influence of metal foam thickness on the conduction and convective heat transfer for a flat plate with metal foam impinged by a rectangular slot jet,” Int. J. of Thermal Sciences, vol. 179, pp. 107665, 2022. DOI: 10.1016/j.ijthermalsci.2022.107665.
  • K. Vadiraj and S. V. Prabhu, “Influence of spanwise pitch on local heat transfer distribution for in-line arrays of circular jets with spent air flow in two opposite directions”, Experimental Thermal and Fluid Science, Vol. 33, no. 1, pp. 84–95, 2008. 2008 July 04. DOI: 10.1016/j.expthermflusci.
  • K. Vadiraj and S. V. Prabhu, “Influence of streamwise pitch on local heat Transfer distribution for in-line arrays of Circular jets with spent air flow in two opposite directions,” Exp. Heat Transfer, vol. 22, no. 4, pp. 228–256, 2009. DOI: 10.1080/08916150903098886.
  • R. J. Moffat, “Using uncertainty analysis in the planning of an experiment,” ASME J. Fluids Eng, vol. 107, no. 2, pp. 173–178, 1986. DOI: 10.1115/1.3242452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.