Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 4
214
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer enhancement in a square channel with a set of triangular prisms: an experimental study

, , &
Pages 389-403 | Received 28 Oct 2022, Accepted 02 Nov 2022, Published online: 21 Nov 2022

References

  • U. Akdag, “Heat transfer from two discrete flush-mounted heaters subjected to laminar pulsating air flow in a channel,” Trans Can. Soc. Mech. Eng, vol. 36, no. 4, pp. 357–372, 2012. DOI: 10.1139/tcsme-2012-0025.
  • S. M. S. Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renw. Sust. Energy Reviews, vol. 78, pp. 821–833, October. 2017. DOI: 10.1016/j.rser.2017.04.112.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with nanofluids under laminar pulsating flow in a trapezoidal-corrugated channel,” Prog. Comput. Fluid Dyn, vol. 17, no. 5, pp. 302–312, 2017. DOI: 10.1504/PCFD.2017.086322.
  • M. H. Mousa, N. Miljkovic, and K. Nawaz, “Review of heat transfer enhancement techniques for single phase flows,” Renw. Sust. Energy Reviews, vol. 137, pp. Article 110566, March. 2021. DOI: 10.1016/j.rser.2020.110566.
  • B. Celik, U. Akdag, S. Gunes, and A. Beskok, “Flow past an oscillating circular cylinder in a channel with an upstream splitter plate,” Physics of Fluids, vol. 20, no. 10, pp. 103603, 2008. DOI: 10.1063/1.3003525.
  • M. Kilic, T. Calisir, and S. Baskaya, “Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet,” Heat Transf. Res, vol. 48, no. 5, pp. 435–463, 2017. DOI: 10.1615/HeatTransRes.2016011959.
  • M. Khoshvaght-Aliabadi, A. Zanganeh, M. H. Akbari, and M. Eskandari, “Experimental investigation on thermal-hydraulic characteristics of a tube equipped with modified vortex-generator inserts,” Exp. Heat Transfer, vol. 30, no. 1, pp. 11–24, 2017. DOI: 10.1080/08916152.2015.1135201.
  • A. Kumar and A. Layek, “Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs,” Exp. Heat Transfer, vol. 35, no. 3, pp. 239–257, 2022. DOI: 10.1080/08916152.2020.1838670.
  • S. Caliskan, A. Dogan, and I. Kotcioglu, “Experimental investigation of heat transfer from different pin fin in a rectangular channel,” Exp. Heat Transfer, vol. 32, no. 4, pp. 376–392, 2019. DOI: 10.1080/08916152.2018.1526228.
  • T. Alam and M. H. Kim, “A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications,” Renewable Sustainable Energy Rev., vol. 81, no. 1, pp. 813–839, 2018. DOI: 10.1016/j.rser.2017.08.060.
  • M. Kumar, S. Dhingra, and G. Singh, “Heat transfer augmentation in rectangular channel using four triangular prisms arranged in staggered manner,” Int. J. Enhanced Res. Sci. Tech. & Engnr, vol. 3, no. 7, pp. 137–144, July 2014.
  • J. L. Rosales, A. Ortega, and J. A. C. Humphrey, “A numerical simulation of the convective heat transfer in confined channel flow past square cylinders: comparison of inline and offset tandem pairs,” Int. J. Heat Mass Transfer, vol. 44, no. 3, pp. 587–603, February. 2001. DOI: 10.1016/S0017-9310(00)00113-7.
  • S. Turki, H. Abbassi, and S. B. Nasrallah, “Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder,” Int. J. Thermal Sciences, vol. 42, no. 12, pp. 1105–1113, December. 2003. DOI: 10.1016/S1290-0729(03)00091-7.
  • S. Bhattacharyya and S. Dhinakaran, “Vortex shedding in shear flow past tandem square cylinders in the vicinity of a plane Wall,” J. Fluids Structures, vol. 24, no. 3, pp. 400–417, April. 2008. DOI: 10.1016/j.jfluidstructs.2007.09.002.
  • M. Kilic, “A heat transfer analysis from a porous plate with transpiration cooling,” Therm. Sci., vol. 23, no. 5, pp. 3025–3034, 2019. DOI: 10.2298/TSCI180326135K.
  • E. Manay, et al., “The prediction of heat transfer and fluid characteristics for equilateral triangular bodies in tandem arrangement by artificial neural networks,” Gazi University Journal of Science, GU J Sci, vol. 25, pp. 505–517, 2012.
  • H. Abbassi, S. Turki, and S. B. Nasrallah, “Numerical investigation of forced convection in a plane channel with a built-in triangular prism,” Int. J. Thermal Sciences, vol. 40, no. 7, pp. 649–658, July-August. 2001. DOI: 10.1016/S1290-0729(01)01254-6.
  • A. K. De and A. Dalal, “Numerical study of laminar forced convection fluid flow and heat transfer from a triangular cylinder placed in a channel,” J. Heat Transfer., vol. 129, no. 5, pp. 646–656, May. 2007. DOI: 10.1115/1.2712848.
  • S. Srikanth, A. K. Dhiman, and S. Bijjam, “Confined flow and heat transfer across a triangular cylinder in a channel,” Int. J. Thermal Sciences, vol. 49, no. 11, pp. 2191–2200, November. 2010. DOI: 10.1016/j.ijthermalsci.2010.06.010.
  • E. M. Alawadhi, “Numerical simulation of fluid flow past an oscillating triangular cylinder in a channel,” J Fluids Eng J FLUID ENG-T ASME, vol. 135, no. 4, pp. 041202, April. 2013. DOI: 10.1115/1.4023654.
  • G. Bosch, M. Kappler, and V. Rodi, “Experiments on the flow past a square cylinder placed near a wall,” Exp. Therm. Fluid Sci., vol. 13, no. 3, pp. 292–305, October. 1996. DOI: 10.1016/S0894-1777(96)00087-8.
  • S. C. C. Bailey, R. J. Martinuzzi, and G. A. Kopp, “The effects of wall proximity on vortex shedding from a square cylinder: three dimensional effects,” Phys. Fluids, vol. 14, no. 12, pp. 4160–4177, 2002. DOI: 10.1063/1.1514972.
  • R. J. Martinuzzi, S. C. C. Bailey, and G. A. Kopp, “Influence of wall proximity on vortex shedding from a square cylinder,” Exp. Fluids, vol. 34, no. 5, pp. 585–596, 2003. DOI: 10.1007/s00348-003-0594-0.
  • D. Chakrabarty and R. Brahma, “Effect of wall proximity in fluid flow and heat transfer from a square prism placed inside a wind tunnel,” Therm. Sci., vol. 11, no. 4, pp. 65–78, 2007. DOI: 10.2298/TSCI0704065C.
  • A. K. Singha, A. Sarkar, and P. K. De, “Numerical study on heat transfer and fluid flow past a circular cylinder in the vicinity of a plane wall,” Num. Heat Transfer, Part.A, vol. 53, no. 6, pp. 641–666, 2008. DOI: 10.1080/10407780701634474.
  • M. Farhadi, K. Sedighi, and A. M. Korayem, “Effect of wall proximity on forced convection in a plane channel with a built-in triangular cylinder,” Int. J. Thermal Sciences, vol. 49, no. 6, pp. 1010–1018, June. 2010. DOI: 10.1016/j.ijthermalsci.2009.12.013.
  • A. Mohsenzedh, M. Farhadi, and K. Sedighi, “Convective cooling of tandem heated triangular cylinders placed in a channel,” Therm. Sci., vol. 14, no. 1, pp. 183–197, 2010. DOI: 10.2298/TSCI1001183M.
  • M. Ali, O. Zeitoun, and A. Nuhait, “Forced convection heat transfer over horizontal triangular cylinder in cross flow,” Int. J. Thermal Sciences, vol. 50, no. 1, pp. 106–114, January. 2011. DOI: 10.1016/j.ijthermalsci.2010.09.007.
  • S. A. Beig, E. Mirzakhalili, and F. Kowsari, “Investigation of optimal position of a vortex generator in a blocked channel for heat transfer enhancement of electronic chips,” Int. J. Heat Mass Transfer, vol. 54, no. 19–20, pp. 4317–4324, September. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.05.013.
  • A. K. El Wahed, M. W. Johnson J.L, and J. L. Sproston, “Numerical study of vortex shedding from different shaped bluff bodies,” Flow Meas. Instrum., vol. 4, no. 4, pp. 233–240, October. 1993. DOI: 10.1016/0955-5986(93)90030-M.
  • H. Chattopadhyay, “Augmentation of heat transfer in a channel using a triangular prism,” Int. J. Thermal Sciences, vol. 46, no. 5, pp. 501–505, 2007. DOI: 10.1016/j.ijthermalsci.2006.07.003.
  • E. Manay, S. Gunes, E. Akcadirci, and V. Ozceyhan, “Numerical analysis of heat transfer and pressure drop in a channel equipped with triangular bodies in side-by-side arrangement,” Online J. Power Energy Eng, vol. 1, pp. 85–89, 2010.
  • H. Singh, T. Alam, M. I. Haque Siddiqui, M. Ashraf Ali, and D. Sagar, “Experimental investigation of heat transfer augmentation due to obstacles mounted in solar air heater duct,” Exp. Heat Transfer, pp. 1–20, 2022. DOI: 10.1080/08916152.-2022.2108166.
  • A. C. Benim, H. Chattopadhyay, and A. Nahavandi, “Computational analysis of turbulent forced convection in a channel with a triangular prism,” Int. J. Thermal Sciences, vol. 50, no. 10, pp. 1973–1983, October. 2011. DOI: 10.1016/j.ijthermalsci.2011.05.002.
  • S. Eiamsa-Ard, S. Sripattanapipat, and P. Promvonge, “Numerical heat transfer analysis in turbulent channel flow over a side-by-side triangular prism pair,” J. Eng. Thermophys., vol. 21, no. 2, pp. 95–110, 2012. DOI: 10.1134/S1810232812020014.
  • S. Caliskan, “Experimental investigation of heat transfer in a channel with new winglet-type vortex generators,” Int. J. Heat Mass Transfer, vol. 78, pp. 604–614, November. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.043.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 73, pp. 3–8, 1953.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. NewYork. USA: John Wiley & Sons, 2011.
  • X. Liu, et al., “Numerical simulation of flow past a triangular prism with fluid–structure interaction,” Eng. Appl. Comput. Fluid Mech, vol. 14, no. 1, pp. 462–476, 2020. DOI: 10.1080/19942060.2020.1721332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.