112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A molecular dynamics study on the size effects of Fe3O4 nanoparticles on the mechanical characteristics of polypyrrole/Fe3O4 nanocomposite

, , &
Pages 493-505 | Received 09 Oct 2023, Accepted 20 Feb 2024, Published online: 19 Mar 2024

References

  • Mandal A, Singh SP, Prasad R. Dynamic mechanical characterization of CNT–PP nanocomposites. J Mol Model. 2016;22:1–7. doi:10.1007/s00894-016-2924-1
  • Moeini M, Barbaz Isfahani R, Saber-Samandari S, et al. Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol Simul. 2020;46(6):476–486. doi:10.1080/08927022.2020.1729983
  • Ghazanlou SI, Jalaly M, Sadeghzadeh S, et al. A comparative study on the mechanical, physical and morphological properties of cement-micro/nanoFe3O4 composite. Sci Rep. 2020;10(1):1–14. doi:10.1038/s41598-020-59846-y
  • Sen M. Nanocomposite materials. Nanotechnol Environ. 2020: 1–12.doi:10.5772/intechopen.93047.
  • Choudhary RB, Ansari S, Bela P. Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: a review. J Energy Storage. 2020;29:101302. doi:10.1016/j.est.2020.101302
  • Shu B, Liu XB, Zhou JF, et al. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Therapeutics. 2019;25(9):951–964. doi:10.1111/cns.13135
  • Sharma M, Waterhouse G, Loader SW, et al. High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm. 2013;443:163–168. doi:10.1016/j.ijpharm.2013.01.006
  • Saber-Samandari S, Mohammadi-Aghdam M, Saber-Samandari S. A novel magnetic bifunctional nanocomposite scaffold for photothermal therapy and tissue engineering. Int J Biol Macromol. 2019;138:810–818. doi:10.1016/j.ijbiomac.2019.07.145
  • Kumar R, Oves M, Almeelbi T, et al. Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J Colloid Interface Sci. 2017;490:488–496. doi:10.1016/j.jcis.2016.11.082
  • haffari-Bohlouli P, Golbaten-Mofrad H, Najmoddin N, et al. Reinforced conductive polyester based on itaconic acids, glycerol and polypyrrole with potential for electroconductive tissue restoration. Synthetic Metals. 2023;293:117238. doi:10.1016/j.synthmet.2022.117238
  • Oltulu M, Remzi Ş. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater Sci Eng: A. 2011;528:7012–7019. doi:10.1016/j.msea.2011.05.054
  • Madandoust R, Mohseni E, Yasin Mousavi S, et al. RETRACTED: an experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction Build Mater. 2015;86:44–50. doi:10.1016/j.conbuildmat.2015.03.100
  • Sikora P, Horszczaruk E, Cendrowski K, et al. The influence of nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Res Lett. 2016;11:1–9. doi:10.1186/s11671-016-1401-1
  • a I, a CDM, Zarandona MJ, et al. Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity. Int J Biol Macromol. 2023;227:1070–1077. doi:10.1016/j.ijbiomac.2022.11.286
  • Thomas LA, Dekker L, Kallumadil M, et al. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem. 2009;19(36):6529–6535. doi:10.1039/b908187a
  • Işıklan N, Nizamudin AH, Mustafa T. Hydroxypropyl cellulose functionalized magnetite graphene oxide nanobiocomposite for chemo/photothermal therapy. Colloids and Surf A. 2023;656:130322. doi:10.1016/j.colsurfa.2022.130322
  • Włodarczyk A, Szymon G, Adrian R, et al. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: challenges and perspectives. Nanomaterials. 2022;12(11):1807. doi:10.3390/nano12111807
  • Esmaeilpour M, Javidi J, Dehghani F, et al. Fe3O4@ SiO2–imid–PMA n magnetic porous nanospheres as recyclable catalysts for the one-pot synthesis of 14-aryl-or alkyl-14 H-dibenzo [a, j] xanthenes and 1, 8-dioxooctahydroxanthene derivatives under various conditions. New J Chem. 2014;38(11):5453–5461. doi:10.1039/C4NJ00961D
  • Boyd BJ. Past and future evolution in colloidal drug delivery systems. Expert Opin Drug Delivery. 2008;5(1):69–85. doi:10.1517/17425247.5.1.69
  • Olusegun SJ, Magdalena O, Agnieszka M-P, et al. Synthesis and characterization of Sr2+ and Gd3+ doped magnetite nanoparticles for magnetic hyperthermia and drug delivery application. Ceram Int. 2023;49(12):19851–19860. doi:10.1016/j.ceramint.2023.03.102
  • Nassireslami E, Motififard M, Kamyab Moghadas B, et al. Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment. J Nanoanal. 2021;8(3):188–198.
  • Carvalho TS, Paula MT, João HB, et al. Bioactive magnetic materials in bone tissue engineering: a review of recent findings in CaP-based particles and 3D-printed scaffolds. Adv NanoBiomed Res. 2023;3(9):2300035. doi:10.1002/anbr.202300035
  • Zhao W, Huang Z, Liu L, et al. Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Compos Sci Technol. 2021;203:108563. doi:10.1016/j.compscitech.2020.108563
  • Yeo J, Chen Y, Han YT, et al. Adsorption and conformational evolution of alpha-helical BSA segments on graphene: a molecular dynamics study. Int J Appl Mech. 2016;8(02):1650021. doi:10.1142/S1758825116500216
  • Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules. 2016;17(06):2160–2167. doi:10.1021/acs.biomac.6b00378
  • Chen G, Li A, Liu H, et al. Mechanical and dynamic properties of resin blend and composite systems: a molecular dynamics study. Compos Struct. 2018;109:160–168. doi:10.1016/j.compstruct.2018.02.001
  • Alian A, Kundalwal S, Meguid S. Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos Struct. 2015;131:545–555. doi:10.1016/j.compstruct.2015.06.014
  • Yu R, Zhai P, Li G, et al. Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg 2 Si. J. Electronic Mater. 2012;41:1465–1469. doi:10.1007/s11664-012-1916-x
  • Amit K, Kamal S, Amit RD. A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. 2020;46(2):136–154. doi:10.1080/08927022.2019.1680844
  • Yadav A, Kumar A, Sharma K, et al. Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study. J Mol Model. 2022;28(6):143. doi:10.1007/s00894-022-05134-7
  • Yadav A, Kumar A, Singh PK, et al. Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr. 2018;186(1):106–114. doi:10.1080/10584587.2017.1370331
  • Alves APP, Koizumi R, Samanta A, et al. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance. Nano Energy. 2017;31:225–232. doi:10.1016/j.nanoen.2016.11.018
  • López Cascales JJ, Otero TF. Molecular dynamics simulations of the orientation and reorientational dynamics of water and polypyrrole rings as a function of the oxidation state of the polymer. Macromol Theory Simul. 2005;14(1):40–48. doi:10.1002/mats.200400066
  • Lopez Cascales J, Fernandez A, Otero T. Characterization of the reduced and oxidized polypyrrole/water interface: a molecular dynamics simulation study. J Phys Chem B. 2003;107(35):9339–9343. doi:10.1021/jp027717o
  • Rühle V, Kirkpatrick J, Kremer K, et al. Coarse-grained modelling of polypyrrole morphologies. Phys Status Solidi (B). 2008;245(5):844–848. doi:10.1002/pssb.200743443
  • Ioniţă M, Alina P. Polypyrrole/carbon nanotube composites: molecular modeling and experimental investigation as anti-corrosive coating. Prog Org Coat. 2011;72(4):647–652. doi:10.1016/j.porgcoat.2011.07.007
  • Folorunso O, Hamam Y, a R, et al. Comparative study of graphene-polypyrrole and borophene-polypyrrole composites: molecular dynamics modeling approach. Eng Solid Mech. 2021;9(3):311–322. doi:10.5267/j.esm.2021.1.006
  • Harris RA. Chemotherapy drug temozolomide adsorbed onto iron-oxide (Fe3O4) nanoparticles as nanocarrier: a simulation study. J Mol Liq. 2019;288:111084. doi:10.1016/j.molliq.2019.111084
  • Liu Z, Cheng Q, Wang Y, et al. The interaction of nanoparticulate Fe3O4 during the diffusion-limited aggregation process: a molecular dynamics simulation. Powder Technol. 2021;384:141–147. doi:10.1016/j.powtec.2020.09.075
  • Konuk M, Sellschopp K, Vonbun-Feldbauer GB, et al. Modeling charge redistribution at magnetite interfaces in empirical force fields. J Phys Chem C. 2021;128(8):4794–4805. doi:10.1021/acs.jpcc.0c10338
  • Chicot D, Mendoza J, Zaoui A, et al. Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO· OH) by instrumented indentation and molecular dynamics analysis. Mater Chem Phys. 2011;129(3):862–870. doi:10.1016/j.matchemphys.2011.05.056
  • Cho J, Joshi M, Sun C. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol. 2006;66(13):1941–1952. doi:10.1016/j.compscitech.2005.12.028
  • Chisholm N, Mahfuz H, Rangari VK, et al. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos Struct. 2005;67(1):115–124. doi:10.1016/j.compstruct.2004.01.010
  • Mishra S, Sonawane S, Singh R. Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J Polym Sci Part B: Polym Phys. 2005;43(1):107–113. doi:10.1002/polb.20296
  • Ng C, Ash B, Schadler L, et al. A study of the mechanical and permeability properties of nano-and micron-TiO2 filled epoxy composites. Adv Compos Lett. 2001;10(3):096369350101000301.
  • Douce J, Boilot J-P, Biteau J, et al. Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings. Thin Solid Films. 2004;466:114–122. doi:10.1016/j.tsf.2004.03.024
  • Adnan A, Sun CT, Mahfuz H. A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos Sci Technol. 2007;67:348–356. doi:10.1016/j.compscitech.2006.09.015
  • Cho J, Sun CT. A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput Mater Sci. 2007;41(1):54–62. doi:10.1016/j.commatsci.2007.03.001
  • Odegard GM, Clancy TC, Gates TS. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer. 2005;46:553–562. doi:10.1016/j.polymer.2004.11.022
  • Yang S, Cho M. Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl Phys Lett. 2008;93(4):043111. doi:10.1063/1.2965486
  • Tsai JL, Tzeng SH. Characterizing mechanical properties of particulate nanocomposites using micromechanical approach. J Compos Mater. 2008;42(22):2345–2361. doi:10.1177/0021998308095503
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi:10.1016/j.cpc.2021.108171
  • Meunier M, Robertson S. Materials studio 20th anniversary. Mol Simul. 2021;47(7):537–539. doi:10.1080/08927022.2021.1892093
  • Maple JR, Hwang M-J, Stockfisch TP, et al. Derivation of class II force fields. I. methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem. 1994;15(2):162–182. doi:10.1002/jcc.540150207
  • Tazikeh S, Kondori J, Zendehboudi S, et al. Molecular dynamics simulation to investigate the effect of polythiophene-coated Fe3O4 nanoparticles on asphaltene precipitation. Chem Eng Sci. 2021;237:116417. doi:10.1016/j.ces.2020.116417
  • Bhowmik R, Katti KS, Katti D. Molecular dynamics simulation of hydroxyapatite–polyacrylic acid interfaces. Polymer. 2007;48(2):664–674. doi:10.1016/j.polymer.2006.11.015
  • Zaoui A, Sekkal W. Pressure-induced softening of shear modes in wurtzite ZnO: a theoretical study. Phys Rev B. 2002;66(17):174106. doi:10.1103/PhysRevB.66.174106
  • Aouas M, Sekkal W, Zaoui A. Pressure effect on phonon modes in gallium nitride: a molecular dynamics study. Solid State Commun. 2001;120(9-10):413–418. doi:10.1016/S0038-1098(01)00382-9
  • Rapaport DC. The art of molecular dynamics simulation. 2nd ed.. New York, USA: Cambridge University Press; 2004.
  • Verlet L. Computer “experiments” on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159(1):98. doi:10.1103/PhysRev.159.98
  • Press WH, Teukolsky SA, Vetterling WT, et al. Numerical recipes: the art of scientific computing. New York: Cambridge University Press; 2007. p. 928–930
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519. doi:10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695. doi:10.1103/PhysRevA.31.1695
  • Zhou M. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc Royal Soc London Ser A: Math, Phys Eng Sci. 2003;459:2347–2392. doi:10.1098/rspa.2003.1127
  • Genies EM, Bidan G, Diaz A. Spectroelectrochemical study of polypyrrole films. J Electroanaly Chem Interfacial Electrochem. 1983;149:101–113.
  • Garcia CE, Arjona F, Guillen C, et al. On the electrical anisotropy of conducting polypyrrole. J Mater Sci. 1990;25:4914–4917. doi:10.1007/BF01129961
  • Majewski P, Thierry B. Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci. 2007;32:203–215. doi:10.1080/10408430701776680
  • Ciprari DL. Mechanical characterization of polymer nanocomposites and the role of interphase [doctoral dissertation], Georgia Institute of Technology; 2004.
  • Leach AR. Molecular modelling: principles and applications. Essex, UK: Pearson Education; 2001.
  • Sun B, Jones JJ, Burford RP, et al. Stability and mechanical properties of electrochemically prepared conducting polypyrrole films. J Mater Sci. 1989;24:4024–4029. doi:10.1007/BF01168967
  • Satoh M, Yamasaki H, Aoki S, et al. Temperature dependence of mechanical properties of electrochemically prepared polypyrole film. Synthetic Metals. 1987;20(1):79–83. doi:10.1016/0379-6779(87)90547-9
  • Sul O, Jang S, Yang E-H. Characterization of thermomechanical properties of polypyrrole nanowires. ASME Int Mech Eng Congress Expos. 2009;43857:301–302.
  • Gandhi M, Spinks G, Burford RP, et al. Film substructure and mechanical properties of electrochemically prepared polypyrrole. Polymer. 1995;36(25):4761–4765. doi:10.1016/00323-8619(59)92912-
  • Bloor D, Hercliffe RD, Galiotis CG, et al. Integration of fundamental polymer. In: LA Kleintjens, PJ Lemstra, editors. Integration of fundamental polymer science and technology. 1986. p. 630–633.
  • Sul O, Jang S, Yang E-H. Determination of mechanical properties and actuation behaviors of polypyrrole–copper bimorph nanoactuators. IEEE Trans Nanotechnol. 2010;10(5):985–990. doi:10.1109/TNANO.2010.2090667
  • Rottler J, Robbins MO. Yield conditions for deformation of amorphous polymer glasses. Phys Rev E. 2001;64:051801. doi:10.1103/PhysRevE.64.051801
  • Woodley S, Battle P, Gale J, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys Chem Chem Phys. 1999;1(10):2535–2542. doi:10.1039/a901227c
  • Chicot D, Roudet F, Zaoui A, et al. Influence of visco-elasto-plastic properties of magnetite on the elastic modulus: multicyclic indentation and theoretical studies. Mater Chem Phys. 2010;119(1–2):75–81. doi:10.1016/j.matchemphys.2009.07.033
  • Reichmann HJ, Jacobsen SD. High-pressure elasticity of a natural magnetite crystal. American Mineralogist. 2004;86(7):1061–1066.
  • Seo M, Chiba M. Nano-mechano-electrochemistry of passive metal surfaces. Electrochimica acta. 2001;47(1–2):319–325.
  • Hearmon R. The elastic constants of crystals and other anisotropic materials. Landolt-Börnstein Tables. 1984;3(18): 559.
  • Weidenfeller B, Riehemann W, Lei Q. Mechanical spectroscopy of polymer-magnetite composites. Mater Sci Eng. A. 2004;370(–2): 278–283.
  • Yang S, Choi J, Cho M. Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl Mater Interfaces. 2012;4(9):4792–4799. doi:10.1021/am301144z
  • Guth E. Theory of filler reinforcement. Rubber Chem Technol. 1945;18(3):596–604. doi:10.5254/1.3546754
  • Einstein A. Investigations on the theory of the Brownian movement. Chelmsford, USA: Courier Corporation; 1956.
  • Abhilash R, Venkatesh G, Chauhan SS. Micromechanical modeling of bamboo short fiber reinforced polypropylene composites. Multiscale Multidiscipl Model, Exp Des. 2021;4:25–40. doi:10.1007/s41939-020-00081-3
  • Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater. 1969;3(4):732–734. doi:10.1177/002199836900300419
  • Kerner EH. The elastic and thermo-elastic properties of composite media. Proc Phys Soc Sect B. 1956;69(8):808–813. doi:10.1088/0370-1301/69/8/305
  • Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–574. doi:10.1016/0001-6160(73)90064-3
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Royal Soc London Ser A Math Phys Sci. 1957;241:376–396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.