64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of the electric field orientation on the thermal resistance of the solid–liquid interface

, &
Pages 506-516 | Received 27 Nov 2023, Accepted 25 Feb 2024, Published online: 02 Apr 2024

References

  • Li P, Dolado I, Alfaro-Mozaz FJ, et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 2018;7(4):17172.
  • LaHaye M. Investigations and potential applications of qubit-nanoresonator-cavity interactions in a superconducting quantum electromechanical system. Bull. Am. Phys. Soc. 2018;BAPS.2018.MAR.C33.9.
  • Guerra V, Wan C, Degirmenci V, et al. 2D boron nitride nanosheets (BNNS) prepared by high-pressure homogenisation: structure and morphology. Nanoscale. 2018: 19469–19477.
  • Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012;4(22):6908–6939.
  • Aksoy MM, AlHosani M, Bayazitoglu Y. Thermal resistance for Au–water and Ag–water interfaces: molecular dynamics simulations. Int J Thermophys. 2021;42(6):87.
  • Kapitza PL. Heat transfer and superfluidity of helium II. Physical Review. 1941;60(4):354–355.
  • Ma Y, Zhang Z, Chen J, et al. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon. 2018;135:263–269.
  • Stevens RJ, Zhigilei LV, Norris PM. Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations. Int J Heat Mass Transf. 2007;50(19-20):3977–3989.
  • Quan YJ, Yue SY, Liao BL. Electric field effect on the thermal conductivity of wurtzite GaN. Applied Physics Letters. 2021;118(16):162110.
  • Moya X, Kar-Narayan S, Mathur ND. Caloric materials near ferroic phase transitions. Nat Mater. 2014;13(5):439–450.
  • Ma R, Zhang Z, Tong K, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science. 2017;357(6356):1130–1134.
  • Li Y, Li W, Han T, et al. Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials. 2021;6:488–507.
  • Liu K, Lee S, Yang S, et al. Recent progresses on physics and applications of vanadium dioxide. Materials Today. 2018;21(8):875–896.
  • Ihlefeld JF, Foley BM, Scrymgeour DA, et al. Room-Temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 2015;15(3):1791–1795.
  • Yue SY, Yang RQ, Liao BL. Controlling thermal conductivity of two-dimensional materials via externally induced phonon-electron interaction. Physical Review B. 2019;100(11):115408.
  • Chen J, Xu X, Zhou J, et al. Interfacial thermal resistance: past, present, and future. Reviews of Modern Physics. 2022;94:025002.
  • Hu M, Goicochea JV, Michel B, et al. Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces. Nano Lett. 2010;10(1):279–285.
  • Pham A, Barisik M, Kim B. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces. Journal of Chemical Physics. 2013;139(24):244702.
  • Han HX, Merabia S, Muller-Plathe F. Thermal transport at solid-liquid interfaces: high pressure facilitates heat flow through nonlocal liquid structuring. Journal of Physical Chemistry Letters. 2017;8(9):1946–1951.
  • Mittal J, Hummer G. Interfacial thermodynamics of confined water near molecularly rough surfaces. Faraday Discuss. 2010;146:341–352.
  • Wang Y, Keblinski P. Role of wetting and nanoscale roughness on thermal conductance at liquid-solid interface. Appl Phys Lett. 2011;99(7):073112.
  • Acharya H, Mozdzierz NJ, Keblinski P, et al. How chemistry, nanoscale roughness, and the direction of heat flow affect thermal conductance of solid-water interfaces. Ind Eng Chem Res. 2012;51(4):1767–1773.
  • Kim B. Thermal resistance at a liquid–solid interface dependent on the ratio of thermal oscillation frequencies. Chem Phys Lett. 2012;554:77–81.
  • Vera J, Bayazitoglu Y. Temperature and heat flux dependence of thermal resistance of water/metal nanoparticle interfaces at sub-boiling temperatures. Int J Heat Mass Transf. 2015;86:433–442.
  • Alexeev D, Chen J, Walther JH, et al. Kapitza resistance between Few-layer graphene and water: liquid layering effects. Nano Lett. 2015;15(9):5744–5749.
  • Li F, Wang J, Xia G, et al. Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures. Nanoscale. 2019;11(27):13051–13057.
  • Li K, Gu BQ. Molecular dynamic simulations investigating the wetting and interfacial properties of acrylonitrile nanodroplets in contact with variously functionalized graphene sheets. Chem Phys Lett. 2020: 739.
  • Ramos-Alvarado B, Kumar S, Peterson GP. Solid-Liquid thermal transport and Its relationship with wettability and the interfacial liquid structure. Journal of Physical Chemistry Letters. 2016;7(17):3497–3501.
  • Shenogina N, Godawat R, Keblinski P, et al. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys. Rev. Lett. 2009;102(15):156101.
  • Harikrishna H, Ducker WA, Huxtable ST. The influence of interface bonding on thermal transport through solid-liquid interfaces. Appl Phys Lett. 2013;102(25):251606.
  • Feng Y, Liang XG. Heat transfer characteristics in an asymmetrical solid-liquid system by molecular dynamics simulations. Int J Thermophys. 2015;36(7):1519–1529.
  • Wang X, Cheng P, Quan XJ. Molecular dynamics simulations of thermal boundary resistances in a liquid between two solid walls separated by a nano gap. International Communications in Heat and Mass Transfer. 2016;77:183–189.
  • Li X, Maute K, Dunn ML, et al. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B. 2010;81:245318.
  • Wang Y, Wei H, Li Z. Effect of magnetic field on the physical properties of water. Results in Physics. 2018;8:262–267.
  • Yenigun O, Barisik M. Electric field controlled heat transfer through silicon and nano-confined water. Nanoscale and Microscale Thermophysical Engineering. 2019;23(4):304–316.
  • Yang N, Luo T, Esfarjani K, et al. Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. J Comput Theor Nanosci. 2015;12(2):168–174.
  • Chen G. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons (New York, NY, 2005; online edn, Oxford Academic, 31 Oct. 2023), doi:10.1093/oso/9780195159424.001.0001.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering. 2010;18(1):0015012.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–6271.
  • Brooks CL. Computer simulation of liquids. J Solution Chem. 1989;18(1):99–99.
  • Ryckaert J, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327–341.
  • Allen MP, Tidesley DJ. Computer simulation of liquids. Vol. 18Oxford University Press; 1989. p. 99.
  • Kim BH, Beskok A, Cagin T. Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid–liquid interfaces. Microfluidics and Nanofluidics. 2008;5(4):551–559.
  • Maruyama S, Kimura T. A study on thermal resistance over a solid-liquid interface by the molecular dynamics method. Thermal Science and Engineering. 1999;7(1):63–68.
  • Mei J, Davenport JW, Fernando GW. Analytic embedded-atom potentials for fcc metals: application to liquid and solid copper. Phys. Rev. B. 1991;43(6):4653–4658.
  • Johnson RA. Analytic nearest-neighbor model for fcc metals. Physical Review B. 1988;37(8):3924–3931.
  • Vo TQ, Kim B. Interface thermal resistance between liquid water and various metallic surfaces. International Journal of Precision Engineering and Manufacturing. 2015;16(7):1341–1346.
  • Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 1950;18:817–829.
  • Todd BD, Daivis PJ, Evans DJ. Heat flux vector in highly inhomogeneous nonequilibrium fluids. Phys. Rev. E. 1995;51(5):4362–4368.
  • Pham A, Barisik M, Kim BH. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces. J. Chem. Phys. 2013;139(24):244702-1–244702-1.
  • Tamm A, Caro M, Caro A, et al. Langevin dynamics with spatial correlations as a model for electron-phonon coupling. Phys. Rev. Lett. 2018;120(18):185501.
  • Olarte-Plata JD, Bresme F. Thermal conductance of the water–gold interface: the impact of the treatment of surface polarization in non-equilibrium molecular simulations. J Chem Phys. 2022;156(20):204701.
  • Heino P, Ristolainen E. Thermal conduction at the Nanoscale in some metals by MD. Microelectronics J. 2003;34(9):773–777.
  • Zhao AZ, Wingert MC, Chen R, et al. Phonon gas model for thermal conductivity of dense, strongly interacting liquids. J Appl Phys. 2021;129(23):235101.
  • English NJ, Tse JS. Thermal conductivity of supercooled water: an equilibrium molecular dynamics exploration. J Phys Chem Lett. 2014;5(21):3819–3824.
  • Ge S, Chen M. Effects of surface charge and electric field on the interfacial thermal resistance at liquid/solid interfaces. Acta Physico-Chimica Sinica. 2012;28(12):2939–2943.
  • Yan JY, Patey GN. Molecular dynamics simulations of Ice nucleation by electric fields. The Journal of Physical Chemistry A. 2012;116(26):7057–7064.
  • Wagner W, Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of physical and chemical reference data. 2002;31(2):387–535.
  • Evans W, Fish J, Keblinski P. Thermal conductivity of ordered molecular water. Journal of chemical physics. 2007;126(15):154504.
  • Chakraborty P, Ma T, Cao L, et al. Significantly enhanced convective heat transfer through surface modification in nanochannels. Int J Heat Mass Transf. 2019;136:702–708.
  • Peng X, Jiang P, Ouyang Y, et al. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure. Nanotechnology. 2022;33(3):0035707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.