35
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A molecular level-based parametric study on the capture of hydrogen sulfide and carbon oxides from flue gas mixtures using Au nanopores

, , &
Pages 517-527 | Received 08 Mar 2023, Accepted 23 Feb 2024, Published online: 25 Mar 2024

References

  • Mutumba GS, Odongo T, Okurut NF, et al. A survey of literature on energy consumption and economic growth. Energ Reports. 2021;7:9150–9239.
  • Majumdar S, Maurya M, Singh JK. Adsorptive separation of CO2 from multicomponent mixtures of flue gas in carbon nanotube arrays: A grand canonical monte carlo study. Energ Fuel. 2018;32(5):6090–6097.
  • Lin Y, Li Y, Xu Z, et al. Carbon consumption and adsorption-regeneration of H2S on activated carbon for coke oven flue gas purification. Environ Sci Pollut Res. 2021;28(43):60557–60568.
  • Agarwal M, Sudharsan J. A comprehensive review on scavenging H2S compounds in oil and gas industry by using nanomaterials. Mater Today. 2021;44:1504–1510.
  • Bertelsmann A, Knight G, Tiwary A, et al. PHA guidance for correlating H2S concentrations in process streams to severity of adverse health outcomes in the event of a leak. J Loss Prevent Proc. 2019;60:282–287.
  • Carapezza ML, Ranaldi M, Tarchini L, et al. Dangerous emissions of endogenous CO2 and H2S from gas blowouts of shallow wells in the Rome municipality (Italy). Appl Geochem. 2020;123:104769.
  • Liang S, Liu F, Jiang L. Recent advances on nitrogen-doped metal-free materials for the selective catalytic oxidation of hydrogen sulfide. Curr Opin Green Sustain Chem. 2020;25:100361.
  • Pourazizi R, Mohtadi-Bonab MA, Davani RKZ, et al. Effect of thermo-mechanical controlled process on microstructural texture and hydrogen embrittlement resistance of API 5L X70 pipeline steels in sour environments. Int J Pres Ves Pip. 2021;194:104491.
  • Jack TA, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel. Int J Hydrogen Energ. 2020;45(35):17671–17684.
  • Gür TM. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies. Prog Energ Combust. 2020;89:100965.
  • Lu S, Fang M, Li Q, et al. The experience in the research and design of a 2 million tons/year flue gas CO2 capture project for coal-fired power plants. Int J Greenh Gas Con. 2021;110:103423.
  • Pedersen JST, Santos FD, van Vuuren D, et al. An assessment of the performance of scenarios against historical global emissions for IPCC reports. Global Environ Chang. 2021;66:102199.
  • Zhang Z, Wang T, Blunt MJ, et al. Advances in carbon capture, utilization and storage. Appl Energ. 2020;278:115627.
  • Khosroabadi F, Aslani A, Bekhrad K, et al. Analysis of carbon dioxide capturing technologies and their technology developments. Clean Eng Technol. 2021;5:100279.
  • Jang E, Choi SW, Lee KB. Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon. Fuel. 2019;248:85–92.
  • Quan C, Wang H, Jia X, et al. Effect of carbonization temperature on CO2 adsorption behavior of activated coal char. J Energ Inst. 2021;97:92–99.
  • Wang Y, Wang J, Ma C, et al. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2. J Colloid Interfac Sci. 2019;534:72–80.
  • Qayyum A, Ali U, Ramzan N. Acid gas removal techniques for syngas, natural gas, and biogas clean up–a review. Energ Source Part A. 2020;42(1):1–24.
  • Azmi AA, Aziz MAA. Mesoporous adsorbent for CO2 capture application under mild condition: a review. J Environ Chem Eng. 2019;7(2):103022.
  • Lei G, Liu C, Xie H, et al. Removal of hydrogen sulfide from natural gas by the graphene-nanotube hybrid structure: A molecular simulation. Chem Phys Lett. 2014;616:232–236.
  • Tronci G, Raffone F, Cicero G. Theoretical study of nanoporous graphene membranes for natural gas purification. Appl Sci. 2018;8(9):1547.
  • Molaghan P, Jahanshahi M, Ahangari MG. H2 and H2S separation by adsorption using graphene and zinc oxide sheets: molecular dynamic simulations. Physica B. 2021;619:413175.
  • Moradi H, Azizpour H, Bahmanyar H, et al. Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorg Chem Commun. 2020;118:108048.
  • Abufager PN, Lustemberg PG, Crespos C, et al. DFT study of dissociative adsorption of hydrogen sulfide on Cu (111) and Au (111). Langmuir. 2008;24(24):14022–14026.
  • Zhang TT, Tang QL, Yao MY, et al. Quantum chemical DFT study of molecular adsorption of H2S on clean and chemically modified Au (110) surfaces. Appl Surf Sci. 2021;542:148595.
  • Kuo JK, Huang PH, Huang TH, et al. Adsorption behaviors of hydrogen sulphide on Au (110) nanoslit array surfaces using molecular dynamics simulations. Mol Simulat. 2016;42(17):1429–1436.
  • Zhang Z, Wang Y, Qi Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C. 2009;113(29):12629–12636.
  • Corti CW, Holliday RJ, Thompson DT. Progress towards the commercial application of gold catalysts. Top Catal. 2007;44(1):331–343.
  • Kim SH. Nanoporous gold: preparation and applications to catalysis and sensors. Curr Appl Phys. 2018;18(7):810–818.
  • Sun J, Lu Y, He L, et al. Colorimetric sensor array based on gold nanoparticles: design principles and recent advances. TrAC Trend Anal Chem. 2020;122:115754.
  • Otsuka N. Fireside corrosion. Shreir's Corros. 2010;1:457–481.
  • Haile JM, Johnston I, Mallinckrodt AJ, et al. Molecular dynamics simulation: elementary methods. Comput Phys. 1993;7(6):625–625.
  • Procacci P, Marsili S, Barducci A, et al. Crooks equation for steered molecular dynamics using a Nosé-Hoover thermostat. J Chem Phys. 2006;125(16):164101.
  • Belmabkhout Y, De Weireld G, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir. 2009;25(23):13275–13278.
  • Ma H, Lv S, Zhou L, et al. Detailed kinetic modeling of H2S formation during fuel-rich combustion of pulverized coal. Fuel Process Technol. 2020;199:106276.
  • Kung SC. Further understanding of furnace wall corrosion in coal-fired boilers. Corrosion. 2014;70(7):749–763.
  • Levitt M, Hirshberg M, Sharon R, et al. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun. 1995;91(1–3):215–231.
  • Levitt M, Hirshberg M, Sharon R, et al. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J Phys Chem B. 1997;101(25):5051–5061.
  • Cygan RT, Romanov VN, Myshakin EM. Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. J Phys Chem C. 2012;116(24):13079–13091.
  • Harris JG, Yung KH. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem. 1995;99(31):12021–12024.
  • Nath SK. Molecular simulation of vapor−liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes. J Phys Chem B. 2003;107(35):9498–9504.
  • Nath SK, Escobedo FA, de Pablo JJ. On the simulation of vapor–liquid equilibria for alkanes. J Chem Phys. 1998;108(23):9905–9911.
  • Poudyal I, Adhikari NP. Temperature dependence of diffusion coefficient of carbon monoxide in water: A molecular dynamics study. J Mol Liq. 2014;194:77–84.
  • Verlet L. “Computer experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159(1):98.
  • López-Rendón R, Alejandre J. Molecular dynamics simulations of the solubility of H2S and CO2 in water. J Mex Chem Soc. 2008;52(1):88–92.
  • Alexiadis A, Kassinos S. Molecular dynamic simulations of carbon nanotubes in CO2 atmosphere. Chem Phys Lett. 2008;460(4–6):512–516.
  • Levy RM, Kitchen DB, Blair JT, et al. Molecular dynamics simulation of time-resolved fluorescence and nonequilibrium solvation of formaldehyde in water. J Phys Chem. 1990;94(11):4470–4476.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–11236.
  • Lincoln RC, Koliwad KM, Ghate PB. Morse-potential evaluation of second-and third-order elastic constants of some cubic metals. Phys Rev. 1967;157(3):463.
  • Spohr E. Ion adsorption on metal surfaces. The role of water-metal interactions. J Mol Liq. 1995;64(1–2):91–100.
  • Dou Y, Zhigilei LV, Winograd N, et al. Explosive boiling of water films adjacent to heated surfaces: A microscopic description. J Phys Chem A. 2001;105(12):2748–2755.
  • Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
  • Huang PH. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores. Phys Chem Chem Phys. 2015;17(35):22686–22698.
  • Jiang Z, Li M, Qin P, et al. Insight into the adsorption and decomposition mechanism of H2S on clean and S-covered Au (100) surface: A theoretical study. Appl Surf Sci. 2014;311:40–46.
  • Lin X, Groß A. First-principles study of the water structure on flat and stepped gold surfaces. Surf Sci. 2012;606(11–12):886–891.
  • Liu X, Sun L, Deng WQ. Theoretical investigation of CO2 adsorption and dissociation on low index surfaces of transition metals. J Phys Chem C. 2018;122(15):8306–8314.
  • Kuo JK, Tsai YT, Huang PH, et al. Capture of acidic gas molecules in metallic nanopillar array surfaces. J Mol Model. 2021;27:139(page 1–14).
  • Huang PH, Hung SC, Huang MY. Molecular dynamics investigations of liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. Phys Chem Chem Phys. 2014;16:15289–15298.
  • Meng M, Qiu Z, Zhong R, et al. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chem Eng J. 2019;368:847–864.
  • Geng J, Thomas MD, Shephard DS, et al. Suppressed electron hopping in a Au nanoparticle/H2S system: development towards a H2S nanosensor. Chem Commun. 2005;14:1895–1897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.