111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modelling infrared spectra of the O-H stretches in liquid H2O based on a deep learning potential, the importance of nuclear quantum effects

, , , ORCID Icon &
Pages 539-546 | Received 29 Sep 2023, Accepted 05 Mar 2024, Published online: 14 Mar 2024

References

  • Auer B, Kumar R, Schmidt JR, et al. Hydrogen bonding and raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc Natl Acad Sci U S A. 2007;104:14215–14220. doi:10.1073/pnas.0701482104
  • Bakker HJ, Skinner JL. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev. 2010;110:1498–1517. doi:10.1021/cr9001879
  • Zhang C, Khaliullin RZ, Bovi D, et al. Vibrational signature of water molecules in asymmetric hydrogen bonding environments. J Phys Chem Lett. 2013;4:3245–3250. doi:10.1021/jz401321x
  • Perakis F, Marco DL, Shalit A, et al. Vibrational spectroscopy and dynamics of water. Chem Rev. 2016;116:7590–7607. doi:10.1021/acs.chemrev.5b00640
  • Paarmann A, Hayashi T, Mukamel S, et al. Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy. J Chem Phys. 2008;128:191103. doi:10.1063/1.2919050
  • Chen Y, Li H. Intermolecular interaction in water hexamer. J Phys Chem A. 2010;114:11719–11724. doi:10.1021/jp104822e
  • Choi JH, Cho M. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants. J Chem Phys. 2013;138:174108. doi:10.1063/1.4802991
  • Elsaesser T. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Acc Chem Res. 2009;42:1220–1228. doi:10.1021/ar900006u
  • Nienhuys HK, Woutersen S, van Santen RA, et al. Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy. J Chem Phys. 1999;111:1494–1500. doi:10.1063/1.479408
  • Lawrence CP, Skinner JL. Ultrafast infrared spectroscopy probes hydrogen-bonding dynamics in liquid water. Chem Phys Lett. 2003;369:472–477. doi:10.1016/S0009-2614(02)02039-0
  • Kraemer D, Cowan ML, Paarmann A, et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc Natl Acad Sci U S A. 2008;105:437–442. doi:10.1073/pnas.0705792105
  • Zhao W, Wright JC. Spectral simplification in vibrational spectroscopy using doubly vibrationally enhanced infrared four wave mixing. J Am Chem Soc. 1999;121:10994–10998. doi:10.1021/ja9926414
  • Bonn M, Hess C, Miners JH, et al. Novel surface vibrational spectroscopy: infrared-infrared visible sum-frequency generation. Phys Rev Lett. 2001;86:1566–1569. doi:10.1103/PhysRevLett.86.1566
  • Fecko CJ, Eaves JD, Loparo JJ, et al. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science. 2003;301:1698–1702. doi:10.1126/science.1087251
  • van Wilderen LJGW, Bredenbeck J. From ultrafast structure determination to steering reactions: mixed IR/non-IR multidimensional vibrational spectroscopies. Angew Chem Int Ed. 2015;54:11624–11640. doi:10.1002/anie.201503155
  • Nicodemus RA, Corcelli SA, Skinner JL, et al. Collective hydrogen bond reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy. J Phys Chem B. 2011;115:5604–5616. doi:10.1021/jp111434u
  • Ramasesha K, De Marco L, Mandal A, et al. Water vibrations have strongly mixed intra- and intermolecular character. Nat Chem. 2013;5:935–940. doi:10.1038/nchem.1757
  • Courtney TL, Fox ZW, Estergreen L, et al. Measuring coherently coupled intramolecular vibrational and charge-transfer dynamics with two-dimensional vibrational−electronic spectroscopy. J Phys Chem Lett. 2015;6:1286–1292. doi:10.1021/acs.jpclett.5b00356
  • Asbury JB, Steinel T, Stromberg C, et al. Water dynamics: vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations. J Phys Chem A. 2004;108:1107–1119. doi:10.1021/jp036266k
  • Medders GR, Paesani F. Infrared and raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics. J Chem Theory Comput. 2015;11:1145–1154. doi:10.1021/ct501131j
  • Babin V, Leforestier C, Paesani F. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput. 2013;9:5395–5403. doi:10.1021/ct400863t
  • Babin V, Medders GR, Paesani F. Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput. 2014;10:1599–1607. doi:10.1021/ct500079y
  • Medders GR, Babin V, Paesani F. Development of a “first principles” water potential with flexible monomers. III. liquid phase properties. J Chem Theory Comput. 2014;10:2906–2910. doi:10.1021/ct5004115
  • Babin V, Medders GR, Paesani F. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J Phys Chem Lett. 2012;3:3765–3769. doi:10.1021/jz3017733
  • Medders GR, Babin V, Paesani F. A Critical assessment of two-body and three-body interactions in water. J Chem Theory Comput. 2013;9:1103–1114. doi:10.1021/ct300913g
  • Bukowski R, Szalewicz K, Groenenboom GC, et al. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface. J Chem Phys. 2018;128:094313. doi:10.1063/1.2832746
  • Bukowski R, Szalewicz K, Groenenboom GC, et al. Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water. J Chem Phys. 2008;128:094314. doi:10.1063/1.2832858
  • Hunter KM, Shakib FA, Paesani F. Disentangling coupling effects in the infrared spectra of liquid water. J Phys Chem B. 2018;122:10754–10761. doi:10.1021/acs.jpcb.8b09910
  • Kuehne TD, Krack M, Parrinello M. Static and dynamical properties of liquid water from first principles by a novel Car Parrinello-like approach. J Chem Theory Comput. 2009;5:235–241. doi:10.1021/ct800417q
  • Kananenka AA, Skinner JL. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. J Chem Phys. 2018;148:244107. doi:10.1063/1.5037113
  • Hornícek J, Kaprálová P, Bour P. Simulations of vibrational spectra from classical trajectories: calibration with ab initio force fields. J Chem Phys. 2007;127:084502. doi:10.1063/1.2756837
  • Larentzos JP, Greathouse JA, Cygan RT. An ab initio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite. J Phys Chem C. 2008;111:12752–12759. doi:10.1021/jp072959f
  • Groß A, Sakong S. Ab initio simulations of water/metal interfaces. Chem Rev. 2022;122:10746–10776. doi:10.1021/acs.chemrev.1c00679
  • Zhang C, Wu J, Galli G, et al. Structural and vibrational properties of liquid water from van der Waals density functionals. J Chem Theory Comput. 2011;7:3054–3061. doi:10.1021/ct200329e
  • Nagata Y, Yoshimune S, Hsieh CS, et al. Ultrafast vibrational dynamics of water disentangled by reverse non-equilibrium ab initio molecular dynamics simulations. Phys Rev X. 2015;5:021002.
  • Kessler J, Elgabarty H, Spura T, et al. Structure and dynamics of the instantaneous water/vapor interface revisited by path-integral and ab initio molecular dynamics simulations. J Phys Chem B. 2015;119:10079–10086. doi:10.1021/acs.jpcb.5b04185
  • Marsalek O, Markland TE. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J Phys Chem Lett. 2017;8:1545–1551. doi:10.1021/acs.jpclett.7b00391
  • Buch V. Molecular structure and OH-stretch spectra of liquid water surface. J Phys Chem B. 2005;109:17771–17774. doi:10.1021/jp052819a
  • Torri H. Time-Domain calculations of the polarized raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water. J Phys Chem A. 2006;110:9469–9477. doi:10.1021/jp062033s
  • Corcelli SA, Lawrence CP, Skinner JL. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. J Chem Phys. 2004;120:8107. doi:10.1063/1.1683072
  • Auer BM, Kumar R, Schmidt JR, et al. Hydrogen bonding and raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O, Proc. Natl Acad Sci USA. 2007;104:14215. doi:10.1073/pnas.0701482104
  • Auer BM, Skinner JL. IR and raman spectra of liquid water: theory and interpretation. J Chem Phys. 2008;128:224511. doi:10.1063/1.2925258
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401. doi:10.1103/PhysRevLett.98.146401
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8:3192–3203. doi:10.1039/C6SC05720A
  • Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361:360–365. doi:10.1126/science.aat2663
  • Friederich P, Häse F, Proppe J, et al. Machine-learned potentials for next-generation matter simulations. Nat Mater. 2021;20:750–761.
  • Zhang L, Han J, Wang H, et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018;120:143011.
  • Han J, Zhang L, Car R, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Commun Comput Phys. 2018;23:629.
  • Ko H, Zhang L, Santra B, et al. Isotope effects in liquid water via deep potential molecular dynamics. Mol Phys. 2019;117:3269–3281. doi:10.1080/00268976.2019.1652366
  • Zhang C, Tang F, Chen M, et al. Modeling liquid water by climbing up Jacob’s ladder in density functional theory facilitated by using deep neural network potentials. J Phys Chem B. 2021;125:11444–11456. doi:10.1021/acs.jpcb.1c03884
  • Thompson AP, Aktulga H, Berger HR, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp Phys Comm. 2022;271:108171. doi:10.1016/j.cpc.2021.108171
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164. doi:10.1002/jcc.21224
  • Kuhne TD, Iannuzzi D, Ben M, et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: efficient and accurate electronic structure calculations. J Chem Phys. 2020;152:194103. doi:10.1063/5.0007045
  • Sun J, Ruzsinszky A, Perdew JP. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys Rev Lett. 2015;115:036402. doi:10.1103/PhysRevLett.115.036402
  • Chen M, Ko HY, Remsing RC, et al. Ab initio theory and modeling of water. Proc Natl Acad Sci U S A. 2017;114:10846–10851. doi:10.1073/pnas.1712499114
  • Goedecker S, Teter M, Hutter J. Separable dual-space gaussian pseudopotentials. Phys Rev B: Condens Matter Mater Phys. 1996;54:1703–1710. doi:10.1103/PhysRevB.54.1703
  • VandeVondele J, Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J Chem Phys. 2007;127:114105. doi:10.1063/1.2770708
  • Nose S. A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys. 1984;81:511. doi:10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695. doi:10.1103/PhysRevA.31.1695
  • de Kock MB, Azim S, Kassier GH, et al. Determining the radial distribution function of water using electron scattering: A key to solution phase chemistry. J Chem Phys. 2020;153:194504. doi:10.1063/5.0024127
  • Soper AK. The Radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure? ISRN Phys Chem. 2013;2013:279463.
  • Boulard B, Kieffer J, Phifer CC, et al. Vibratonal spectra in fluoride crystals and glasses at normal and high pressures by computer simulation. J Non-Cryst Solids. 1992;140:350. doi:10.1016/S0022-3093(05)80795-1
  • Bornhauser P, Bougeard D. Intensities of the vibrational spectra of siliceous zeolites by molecular dynamics calculations. I Infrared Spectra. J Phys Chem B. 2001;105:36. doi:10.1021/jp0014925
  • Praprotnik M, Janezic D. Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators. J Chem Phys. 2005;122:174103.
  • Agarwal V, Huber GW, Conner WC, et al. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys. 2011;135:134506. doi:10.1063/1.3646306
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi:10.1021/j100308a038
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983;79:926–935. doi:10.1063/1.445869
  • Ohto T, Usui K, Hasegawa T, et al. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. J Chem Phys. 2015;143:124702. doi:10.1063/1.4931106
  • Zhong K, Yu CC, Dodia M, et al. Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction. Phys Chem Chem Phys. 2020;22:12785. doi:10.1039/C9CP06335H
  • Kapil V, Kovács DP, Csányi G, et al. First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. Faraday Discuss. 2024;249:50–68. doi:10.1039/d3fd00113j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.