93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic effects of temperature and strain rate on tensile properties of simulated Ni-6Cu alloy with Σ3 non-Arrhenius grain boundary

, , , &
Pages 547-559 | Received 14 Sep 2023, Accepted 05 Mar 2024, Published online: 20 Mar 2024

References

  • Rohrer GS. Grain boundary energy anisotropy: a review. J Mater Sci. 2011;46:5881–5895. doi:10.1007/s10853-011-5677-3
  • Peterson NL. Grain-boundary diffusion in metals. Int Met. 1983;28:65–91. doi:10.1179/imtr.1983.28.1.65
  • Frolov T, Olmsted DL, Asta M, et al. Structural phase transformations in metallic grain boundaries. Nat Commun. 2013;4:1–7. doi:10.1038/ncomms2919
  • Luo J, Zhou N. High-entropy grain boundaries. Commun Mater. 2023;4:1–8. doi:10.1038/s43246-023-00335-w
  • Callister WD, Rethwisch DG. Materials science and engineering: an introduction; n.d.
  • Palumbo G, Aust KT. Localized corrosion at grain boundary intersections in high purity nickel. Scr Metall. 1988;22:847–852. doi:10.1016/S0036-9748(88)80062-0
  • Watanabe T. Grain boundary design for advanced materials on the basis of the relationship between texture and grain boundary character distribution (GBCD). Textures Microstruct. 1993;20:195–216. doi:10.1155/TSM.20.195
  • Hallil A, Metsue A, Bouhattate J, et al. Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations. Philos Mag. 2016;96:2088–2114. doi:10.1080/14786435.2016.1189616
  • Li X, Guan X, Jia Z, et al. Twin-related grain boundary engineering and its influence on mechanical properties of face-centered cubic metals: a review. Metals (Basel). 2023;13:155. doi:10.3390/met13010155
  • Kim CS, Hu Y, Rohrer GS, et al. Five-parameter grain boundary distribution in grain boundary engineered brass. Scr Mater. 2005;52:633–637. doi:10.1016/j.scriptamat.2004.11.025
  • Randle V, Ralph B. Grain boundary structure and mechanical properties. Rev Phys Appliquée. 1988;23:501–512. doi:10.1051/rphysap:01988002304050100
  • Jang JM, Lee W, Ko SH. The effects of grain boundary structures on mechanical properties in nanocrystalline al alloy. Arch Metall Mater. 2021;66:971–975. doi:10.24425/amm.2021.136408
  • Zhou X, Li X, Lu K. Size dependence of grain boundary migration in metals under mechanical loading. Phy Rev Lett. 2019;122:1–6. doi:10.1103/PhysRevLett.122.126101
  • Sainath G, Choudhary BK. Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Phys Lett Sect A Gen At Solid State Phy. 2015;379:1902–1905. doi:10.1016/j.physleta.2015.05.027
  • Zhang Y, Jiang S, Zhu X, et al. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation. Phys Lett Sect A Gen At Solid State Phys. 2016;380:2757–2761. doi:10.1016/j.physleta.2016.06.044
  • Zhou K, Liu B, Shao S, et al. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper. Phys Lett Sect A Gen At Solid State Phys. 2017;381:1163–1168. doi:10.1016/j.physleta.2017.01.027
  • Yang Z, Yang Q, Zhang G. Poisson’s ratio and Young’s modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular dynamics. Phys Lett Sect A Gen At Solid State Phys. 2017;381:280–283. doi:10.1016/j.physleta.2016.10.044
  • Li J, Lu B, Zhou H, et al. Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: grain-size and temperature effects. Phys Lett Sect A Gen At Solid State Phys. 2019;383:1922–1928. doi:10.1016/j.physleta.2018.10.053
  • Yang Z, Liu J, Yang Y, et al. Twin boundary and grain boundary effects on cyclic responses of tensile pre-deformed highly oriented nanotwinned Cu: molecular dynamics simulation. Phys Lett Sect A Gen At Solid State Phys. 2020;384:126555. doi:10.1016/j.physleta.2020.126555
  • Luan S, Tang B, Zhao Q, et al. Length effects on tensile behavior of Au-Ag heterostructured nanowires with the load on different ends: a molecular dynamics study. Phys Lett Sect A Gen At Solid State Phys. 2020;384:126929. doi:10.1016/j.physleta.2020.126929
  • Zhang Y, Yuan D, Ma L, et al. Crack growth in zirconium single crystal under cyclic loading: A molecular dynamics simulation. Phys Lett Sect A Gen At Solid State Phys. 2022;455:128506. doi:10.1016/j.physleta.2022.128506
  • Cao A. Molecular dynamics simulations of nanocrystalline nickel and copper revealing different failure model of FCC metals. Mater Sci Forum. 2010;633–634:31–38. doi:10.4028/www.scientific.net/MSF.633-634.31
  • Vu TN, Pham VT, Fang TH. Deformation mechanisms and mechanical properties of nanocrystalline CuxNi100−x alloys during indentation using molecular dynamics. Mater Today Commun. 2022;33:104282. doi:10.1016/j.mtcomm.2022.104282
  • Saraev D, Miller RE. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Mater. 2006;54:33–45. doi:10.1016/j.actamat.2005.08.030
  • Zhou A, Liu XB, Wang Q, et al. Investigation of nano-tribological behaviors and deformation mechanisms of Cu-Ni alloy by molecular dynamics simulation. Tribol Int. 2023;180:108258. doi:10.1016/j.triboint.2023.108258
  • Verma A, Johnson OK, Thompson GB, et al. Insights into factors that affect non-Arrhenius migration of a simulated incoherent Σ3 grain boundary. Acta Mater. 2023;258. doi:10.1016/j.actamat.2023.119210
  • Robinson J, Verma A, Homer E, et al. Nanotwin stability in alloyed copper under ambient and cryo-temperature dependent deformation states. Mater Sci Eng. A. 2023;871:144866. doi:10.1016/j.msea.2023.144866
  • Dou Y, Liu Y, Huddleston B. A molecular dynamics study of effects of crystal orientation, size scale, and strain rate on penetration mechanisms of monocrystalline copper subjected to impact from a nickel penetrator at very high strain rates. Acta Mech. 2020;231:2173–2201. doi:10.1007/s00707-020-02632-8
  • Eder SJ, Grützmacher PG, Ripoll MR, et al. Effect of temperature on the deformation behavior of copper nickel alloys under sliding. Materials (Basel). 2021;14:1–16. doi:10.3390/ma14010060
  • Yazdani S, Vitry V. Using molecular dynamic simulation to understand the deformation mechanism in Cu, Ni, and equimolar Cu-Ni polycrystalline alloys. Alloys. 2023;2:77–88. doi:10.3390/alloys2010005
  • Kedharnath A, Kapoor R, Sarkar A. Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: A review. Comput Struct. 2021;254:106614. doi:10.1016/j.compstruc.2021.106614
  • Parvizi MS, Aladjem A, Castle JE. Behaviour of 90-10 cupronickel in sea water. Int Mater Rev. 1988;33:169–200. doi:10.1179/imr.1988.33.1.169
  • Farag MM. Quantitative methods of materials selection; 2006. doi:10.1002/0471777447.ch14
  • Popplewell JM, Hart RJ, Ford JA. The effect of iron on the corrosion characteristics of 90-10 cupro nickel in quiescent 3·4%NaCl solution. Corros Sci. 1973;13. doi:10.1016/0010-938X(73)90007-3
  • Zadi-Maad A, Basuki A. The development of additive manufacturing technique for nickel-base alloys: a review. AIP Conf Proc. 2018;1945. doi:10.1063/1.5030286
  • Pawel RE, Stansbury EE. The specific heat of copper, nickel and copper-nickel alloys. J Phys Chem Solids. 1965;26:607–613. doi:10.1016/0022-3697(65)90136-8
  • Le Guyader H, Grolleau AM, Lemieux E, et al. 70/30 copper-nickel seawater piping systems - use of descaling agents and their effects on corrosion properties. 2007:95–115. doi:10.1533/9781845693084.2.95
  • Pervaiz S, Rashid A, Deiab I, et al. Influence of tool materials on machinability of titanium- and nickel-based alloys: A review. Mater Manuf Process. 2014;29:219–252. doi:10.1080/10426914.2014.880460
  • Yang Y, Lin YA, Yan X, et al. Cooperative atom motion in Ni-Cu nanoparticles during the structural evolution and the implication in the high-temperature catalyst design. ACS Appl Energy Mater. 2019;2:8894–8902. doi:10.1021/acsaem.9b01923
  • Dai PQ, Zhang C, Wen JC, et al. Tensile properties of electrodeposited nanocrystalline Ni-Cu alloys. J Mater Eng Perform. 2016;25:594–600. doi:10.1007/s11665-016-1881-2
  • Watanabe T. Grain boundary engineering: historical perspective and future prospects. J Mater Sci. 2011;46:4095–4115. doi:10.1007/s10853-011-5393-z
  • Olmsted DL, Holm EA, Foiles SM. Survey of computed grain boundary properties in face-centered cubic metals-II: grain boundary mobility. Acta Mater. 2009;57:3704–3713. doi:10.1016/j.actamat.2009.04.015
  • Olmsted DL, Foiles SM, Holm EA. Survey of computed grain boundary properties in face-centered cubic metals: I. grain boundary energy. Acta Mater. 2009;57:3694–3703. doi:10.1016/j.actamat.2009.04.007
  • Humberson J, Chesser I, Holm EA. Contrasting thermal behaviors in Σ3 grain boundary motion in nickel. Acta Mater. 2019;175:55–65. doi:10.1016/j.actamat.2019.06.003
  • Humberson J, Holm EA. Anti-thermal mobility in the Σ3 [111] 60° {11 8 5} grain boundary in nickel: mechanism and computational considerations. Scr Mater. 2017;130:1–6. doi:10.1016/j.scriptamat.2016.10.032
  • Chesser I, Holm E. Understanding the anomalous thermal behavior of Σ3 grain boundaries in a variety of FCC metals. Scr Mater. 2018;157:19–23. doi:10.1016/j.scriptamat.2018.07.011
  • Homer ER, Verma A, Britton D, et al. Simulated migration behavior of metastable Σ3 (11 8 5) incoherent twin grain boundaries. IOP Conf Ser Mater Sci Eng. 2022;1249:012019. doi:10.1088/1757-899X/1249/1/012019
  • Bryukhanov IA. Dynamics of edge dislocation in Cu – Ni solid solution alloys at atomic scale. Int J Plast. 2020;135:102834. doi:10.1016/j.ijplas.2020.102834
  • Sharma A, Balasubramanian G. Intermetallics dislocation dynamics in Al 0. 1 CoCrFeNi high-entropy alloy under tensile loading. Intermetallics. 2017;91:31–34. doi:10.1016/j.intermet.2017.08.004
  • Bryukhanov IA, Emelyanov VA. Shear stress relaxation through the motion of edge dislocations in Cu and Cu – Ni solid solution : A molecular dynamics and discrete dislocation study. Comput Mater Sci. 2022;201:110885. doi:10.1016/j.commatsci.2021.110885
  • Bao H, Xu H, Li Y, et al. The interaction mechanisms between dislocations and nano-precipitates in CuFe alloys : A molecular dynamic simulation. Int J Plast. 2022;155:103317. doi:10.1016/j.ijplas.2022.103317
  • Kumar G, Mishra RR, Verma A. Introduction to molecular dynamics simulations. Lect Notes Appl Comput Mech. 2022;99:1–19. doi:10.1007/978-981-19-3092-8_1
  • Singh SK, Chaurasia A, Verma A. Basics of density functional theory, molecular dynamics, and Monte Carlo simulation techniques in materials science, Mater. Horizons From Nat. to Nanomater. Part F1086. 2023:111–124. doi:10.1007/978-981-99-3549-9_5/COVER
  • Kataria A, Verma A, Sethi SK, et al. Introduction to interatomic potentials/forcefields. Lect Notes Appl Comput Mech. 2022;99:21–49. doi:10.1007/978-981-19-3092-8_2
  • Chaturvedi S, Verma A, Singh SK, et al. EAM inter-atomic potential—its implication on nickel, copper, and aluminum (and their alloys). In: Forcefields at. simulations mater. appl.; 2022. p. 133–156. doi:10.1007/978-981-19-3092-8_7
  • Fischer F, Schmitz G, Eich SM. A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential. Acta Mater. 2019;176:220–231. doi:10.1016/j.actamat.2019.06.027
  • Hu C, Berbenni S, Medlin DL, et al. Discontinuous segregation patterning across disconnections. Acta Mater. 2023;246:118724. doi:10.1016/j.actamat.2023.118724
  • Li J, Li J, Zhao Q, et al. Molecular dynamics simulations on the mechanical properties of gyroidal bicontinuous Cu / Ni nanocomposites. J Mater Res Technol. 2022;18:4738–4747. doi:10.1016/j.jmrt.2022.04.142
  • Wang H, Wang C, Zhang L, et al. Effect of strain rate on the mechanical properties of Cu / Ni clad foils. Materials. 2021;14:6846. doi:10.3390/ma14226846
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi:10.1016/j.cpc.2021.108171
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng. 2010;18. doi:10.1088/0965-0393/18/1/015012
  • Yin Q, Wang Z, Mishra R, et al. Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum. AIP Adv. 2017;7. doi:10.1063/1.4975042
  • Li Z, Gao Y, Zhan S, et al. Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading. AIP Adv. 2020;10. doi:10.1063/1.5086903
  • Nguyen TT, Le VV. Tensile deformation behaviours of polycrystalline Cu80Ni20 alloy: insights from molecular dynamics simulations. Mol Simul. 2022;48:1223–1230. doi:10.1080/08927022.2022.2077937
  • Komanduri R, Chandrasekaran N, Raff LM. Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. Int J Mech Sci. 2001;43:2237–2260. doi:10.1016/S0020-7403(01)00043-1
  • Afkham Y, Bahramyan M, Mousavian RT, et al. Tensile properties of AlCrCoFeCuNi glassy alloys : A molecular dynamics simulation study. Mater Sci Eng A. 2017;698:143–151. doi:10.1016/j.msea.2017.05.057
  • Singh SK, Parashar A. Defect dynamics and uniaxial tensile deformation of equi and non-equi-atomic configuration of multi-elemental alloys. Mater Chem Phys. 2021;266:124549. doi:10.1016/j.matchemphys.2021.124549
  • Dora TL, Singh SK, Mishra RR, et al. Role of crystal orientation, temperature, and strain rate on the mechanical characterization of nickel: An atomistic-scale investigation. J Micromanufacturing. 2023. doi:10.1177/25165984231195519
  • Liu J. Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys Lett A. 2020;384:126516. doi:10.1016/j.physleta.2020.126516
  • Homer ER, Johnson OK, Britton D, et al. A classical equation that accounts for observations of non-Arrhenius and cryogenic grain boundary migration. Npj Comput Mater. 2022;8. doi:10.1038/s41524-022-00835-2
  • Tschopp MA, McDowell DL. Structural unit and faceting description of ∑3 asymmetric tilt grain boundaries. J Mater Sci. 2007;42:7806–7811. doi:10.1007/s10853-007-1626-6
  • Tschopp MA, McDowell DL. Structures and energies of ∑3 asymmetric tilt grain boundaries in copper and aluminium. Philos Mag. 2007;87:3147–3173. doi:10.1080/14786430701255895
  • Tschopp MA, McDowell DL. Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag. 2007;87:3871–3892. doi:10.1080/14786430701455321
  • Kumar Singh S, Parashar A. Effect of lattice distortion and nanovoids on the shock compression behavior of (Co-Cr-Cu-Fe-Ni) high entropy alloy. Comput Mater Sci. 2022;209:111402. doi:10.1016/j.commatsci.2022.111402
  • Singh SK, Parashar A. Shock resistance capability of multi-principal elemental alloys as a function of lattice distortion and grain size. J Appl Phys. 2022;132:095903. doi:10.1063/5.0106637
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697. doi:10.1007/BF00419952
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519. doi:10.1063/1.447334
  • Verma A, Parashar A, Packirisamy M. Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci. 2019;470:1085–1092. doi:10.1016/j.apsusc.2018.11.218
  • Verma A, Parashar A. Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci. 2018;143:15–26. doi:10.1016/j.commatsci.2017.10.048
  • Chaurasia A, Verma A, Parashar A, et al. Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C. 2019;123:20059–20070. doi:10.1021/acs.jpcc.9b05965
  • Verma A, Parashar A. Structural and chemical insights into thermal transport for strained functionalised graphene: A molecular dynamics study. Mater Res Express. 2018;5. doi:10.1088/2053-1591/aade36
  • Mitra N, Ramesh KT. Physics of molecular deformation mechanism in 6H-SiC. Model Simul Mater Sci Eng. 2023;31:0–16. doi:10.1088/1361-651X/acbfd4
  • Mahata AK, Kivy MB. Computational study of nanoscale mechanical properties of Fe – Cr – Ni alloy. Mol Simul. 2022;48:551–567. doi:10.1080/08927022.2022.2032692
  • Chen D, Chen T. Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics. Nanoscale Adv. 2005;16:2972–2981. doi:10.1088/0957-4484/16/12/041
  • Wen YH, Zhu ZZ, Zhu RZ. Molecular dynamics study of the mechanical behavior of nickel nanowire: strain rate effects. Comput Mater Sci. 2008;41:553–560. doi:10.1016/j.commatsci.2007.05.012
  • Cui C, Yu Q, Wang W, et al. Molecular dynamics study on tensile strength of twist grain boundary structures under uniaxial tension in copper. Vacuum. 2021;184:109874. doi:10.1016/j.vacuum.2020.109874
  • Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng. 2010. doi:10.1088/0965-0393/18/8/085001
  • Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng. 2012. doi:10.1088/0965-0393/20/8/085007
  • Hong Hue DT, Tran VK, Nguyen VL, et al. High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: A molecular dynamics study. Vacuum. 2022;201:111104. doi:10.1016/j.vacuum.2022.111104
  • Polak WZ. Efficiency in identification of internal structure in simulated monoatomic clusters: comparison between common neighbor analysis and coordination polyhedron method. Comput Mater Sci. 2022;201:12–18. doi:10.1016/j.commatsci.2021.110882
  • Deluigi OR, Valencia F, Amigo N, et al. Atomistic simulations of tensile deformation of a nanoporous high-entropy alloy. J Mater Sci. 2022;57:19817–19831. doi:10.1007/s10853-022-07862-w
  • Li J, Fang Q, Liu B, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular. RSC Adv. 2016;6:76409. doi:10.1039/C6RA16503F
  • Wu W, Yao Z. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor Appl Fract Mech. 2012;62:67–75. doi:10.1016/j.tafmec.2013.01.008
  • Chen B, Wu W. Molecular dynamics simulations of dynamics mechanical behavior and interfacial microstructure evolution of Ni-based single crystal superalloys under shock loading. J Mater Res Technol. 2021;15:6786–6796. doi:10.1016/j.jmrt.2021.11.116
  • Verma A, Parashar A. The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys Chem Chem Phys. 2017;19:16023–16037. doi:10.1039/C7CP02366A
  • Verma A, Parashar A, Packirisamy M. Tailoring the failure morphology of 2D bicrystalline graphene oxide. J Appl Phys. 2018;124. doi:10.1063/1.5033542
  • Tadmor EB, Miller R, Phillips R. Nanoindentation and incipient plasticity. J Mater Res. 1999;14:2233–2250. doi:10.1126/science.235.4784.9
  • Schuh CA, Lund AC. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J Mater Res. 2004;19:2152–2158. doi:10.1557/JMR.2004.0276
  • Mo M, Tang M, Chen Z, et al. Ultrafast visualization of incipient plasticity in dynamically compressed matter. Nat Commun. 2022;13:1–8. doi:10.1038/s41467-022-28684-z
  • Wang WD, Yi CL, Fan KQ. Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires. Trans Nonferrous Met Soc China (English Ed.). 2013;23:3353–3361. doi:10.1016/S1003-6326(13)62875-7
  • Li Z, Gao Y, Zhan S, et al. Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading. AIP Adv. 2020;10. doi:10.1063/1.5086903
  • Fan Y, Osetsky YN, Yip S, et al. Onset mechanism of strain-rate-induced flow stress upturn. Phys Rev Lett. 2012;109:1–5. doi:10.1103/PhysRevLett.109.135503
  • Pu M, He Q, Zhou J. Molecular dynamic study on the deformation mechanism based on strain rate, solute atomic concentration and temperature in dual-phase equiaxial nanocrystalline AgCu alloy. J Alloys Compd. 2019;795:241–253. doi:10.1016/j.jallcom.2019.04.304
  • Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: A molecular dynamics simulations study. Mater Today Commun. 2021;28:102525. doi:10.1016/j.mtcomm.2021.102525
  • Li MC, Jiang MQ, Yang S, et al. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass. Mater Sci Eng A. 2017;680:21–26. doi:10.1016/j.msea.2016.10.081
  • Huang D, Zhang Q, Qiao P. Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires. Comput Mater Sci. 2011;50:903–910. doi:10.1016/j.commatsci.2010.10.028
  • Pan Z, Fu Y, Wei Y, et al. Deformation mechanisms of TRIP–TWIP medium-entropy alloys via molecular dynamics simulations. Int J Mech Sci. 2022;219. doi:10.1016/j.ijmecsci.2022.107098
  • Gan K, Yan D, Zhang Y. Probing the atomic-scale deformation mechanism of single-crystal nanowires coated with a multi-component alloyed shell. Comput Mater Sci. 2023;220:112056. doi:10.1016/j.commatsci.2023.112056
  • Pukšič N, Jenko M, Godec M, et al. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: A molecular dynamics study. Sci Rep. 2017;7:1–8. doi:10.1038/srep42234
  • Zhang C, Lu C, Pei L, et al. The structural rearrangement with secondary reinforcement in graphene / nanotwinned copper nanocomposites : A molecular dynamics study. Compos Part B. 2020;182:107610. doi:10.1016/j.compositesb.2019.107610
  • Tao Y, Zhao Y, Wang Z, et al. Deformation mechanisms of fcc-structured metallic nanocrystal with incoherent twin boundary. Metals (Basel). 2021;11:1–11. doi:10.3390/met11111672
  • Kohnert AA. The kinetics of static recovery by dislocation climb. Npj Comput Mater. 2022;8. doi:10.1038/s41524-022-00790-y
  • Hartman K, Bertoni M, Serdy J, et al. Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing. Appl Phys Lett. 2008;93. doi:10.1063/1.2990644
  • Trautt ZT, Upmanyu M, Karma A. Interface mobility from interface random walk. Science (80-.). 2006;314:632–635. doi:10.1126/science.1131988
  • Deng C, Schuh CA. Atomistic simulation of slow grain boundary motion. Phys Rev Lett. 2011;106:1–4. doi:10.1103/PhysRevLett.106.045503
  • Dora TL, Singh SK, Mishra RR, et al. Deformation and boundary motion analysis of a faceted twin grain boundary. Int J Mech Sci. 2024;269:109044. doi:10.1016/j.ijmecsci.2024.109044
  • Verma A, Johnson OK, Thompson GB, et al. Solute influence in transitions from non-Arrhenius to stick-slip Arrhenius grain boundary migration. Acta Mater. 2024;265:119605. doi:10.1016/j.actamat.2023.119605
  • Cantwell PR, Holm EA, Harmer MP, et al. Anti-thermal behavior of materials. Scr Mater. 2015;103:1–5. doi:10.1016/j.scriptamat.2015.02.011
  • Li J, Li J, Chen Y, et al. On the strain rate sensitivity of mechanical properties of nanoporous gold: temperature effect. Mater Today Commun. 2023;37:107321. doi:10.1016/j.mtcomm.2023.107321
  • Zhou J, Liang Y. Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates. Mol Simul. 2020;46:1181–1190. doi:10.1080/08927022.2020.1807543
  • George J, Dieter E. Mechanical metallurgy. New York (NY): McgrawHill Book Company; 1961.
  • Lee WS, Lin CF, Chen TH, et al. Effects of strain rate and temperature on mechanical behaviour of Ti-15Mo-5Zr-3Al alloy. J Mech Behav Biomed Mater. 2008;1:336–344. doi:10.1016/j.jmbbm.2008.01.002
  • Deng C, Sansoz F. Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys Rev B - Condens Matter Mater Phys. 2010;81:1–7. doi:10.1103/PhysRevB.81.155430
  • Wu P, Zhang L, Mao X, et al. Coupling effect of strain rate and freeze-thaw temperature on dynamic mechanical properties and fractal characteristic of saturated yellow sandstone. Geofluids. 2021;2021:6–8. doi:10.1155/2021/7511467
  • Zhu Y, Wang Q, Huang Z, et al. Strain hardening exponent and strain rate sensitivity exponent of cast AZ31B magnesium alloy. Metals (Basel). 2022;12. doi:10.3390/met12111942

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.