Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 11, 1999 - Issue 6-7
69
Views
15
CrossRef citations to date
0
Altmetric
Research Article

BIOLOGICALLY BASED DOSE-RESPONSE MODELS FOR DEVELOPMENTAL TOXICANTS: Lessons from Methylmercury

Pages 559-572 | Published online: 01 Oct 2008

REFERENCES

  • Allen, B. C., Kaylock, R. J., Kimmel, C. A., and Faustman, E. M. 1994a. Dose-response assessment for developmental toxicity. II. Comparison of generic benchmark dose estimates with no observed adverse effect levels [see comments]. Fundam. Appl. ToxicoL 23(4):487–95.
  • Allen, B. C., Kaylock, R. J., Kimmel, C. A., and Faustman, E. M. 1994b. Dose-response assessment for developmental toxicity. III. Statistical models [see comments]. Fundam. Appl. ToxicoL 23(4):496–509.
  • Altman, J., and Bayer, S. A. 1981. Development of the brain stem in the rat: V. Thymidine-radi-ographic study of the time of origin of neurons in the midbrain tegmentum. J. Comp. NeuroL 198:677–716.
  • Armitage, P., and Doll, R. 1957. A two-stage theory of carcinogenesis in relation to the age distribu-tion of human cancer. Br. J. Cancer11:1 61–1 69 .
  • Aronson, M., Hagberg, B., and Gillberg, C. 1997. Attention deficits and autistic spectrum problems in children exposed to alcohol during gestation: A follow-up study. Dev. Med. Child Neurol. 39(9):583–587.
  • Bagchi, D., Bagchi, M., Tang, L., and Stohs, S. J. 1997. Comparative in vitro and in vivo protein kinase C activation by selected pesticides and transition metal salts. Toxicol. Lett. 91:31-37. Bayer, S. A. 1989. Cellular aspects of brain development. Neurotoxicology10:307–320.
  • Burbacher, T. M., Rodier, P.M., and Weiss, B. 1990. Methylmercury developmental neurotoxicity: A comparison of effects in humans and animals. Neurotoxicol. Teratol. 12:191–202.
  • Catalano, P. J., Scharfstein, D. 0., Ryan, L. M., Kimmel, C. A., and Kimmel, G. L. 1993. Statistical model for fetal death, fetal weight, and malformation in developmental toxicity studies. Teratology 47(4):281–290.
  • Catalano, P., Ryan, L., and Scharfstein, D. 1994. Modeling fetal death and malformation in develop-mental toxicity studies. Risk Anal. 14(4):629–637.
  • Chen, J. J., and Kodell, R. L. 1989. Quantitative risk assessment for teratologic effects. J. Am. Stat. Assoc. 84:966–971.
  • Choi, B. H. 1989. The effects of methylmercury on the developing brain. Prog. Neurobiol. 32(6): 447–470.
  • Choi, B. H. 1991. Effects of methylmercury on neuroepithelial germinal cells in the developing telen-cephalic vesicles of mice. Acta Neuropathol. 81(4):359–365.
  • Farris, F. F., Dedrick, R. L., Allen, P. V., and Smith, J. C. 1993. Physiological model for the pharma-cokinetics of methyl mercury in the growing rat. Toxicol. Appl. PharmacoL 119(1):74-90. Faustman, E. M., and Bartell, S. M. 1997. Review of noncancer risk assessment: Application of benchmark dose methods. Hum. EcoL Risk Assess. 3(5):893–920.
  • Faustman, E. M., Wellington, D. G., Smith, W. P., and Kimmel, C. A. 1989. Characterization of a developmental toxicity dose-response model [published erratum appears in Environ. Health Perspect. 1991 May; 92:182]. Environ. Health Perspect. 79:229–241.
  • Faustman, E. M., Allen, B. C., Kavlock, R. J., and Kimmel, C. A. 1994. Dose-response assessment for developmental toxicity. I. Characterization of database and determination of no observed adverse effect levels [see comments]. Fundam. Appl. Toxicol. 23(4):478–86.
  • Freni, S. C., and Zapisek, W. F. 1991. Biologic basis for a risk assessment model for cleft palate. Cleft Palate Craniofacial J. 28(4):338–346.
  • Gaylor, D. W. 1988. Applicability of cancer risk assessment techniques to other toxic effects. ToxicoL Ind. Health 4(4):453–459.
  • Gaylor, D. W., and Chen, J. J. 1993. Dose-response models for developmental malformations. Teratology47(4):291–297.
  • Gaylor, D. W., and Razzaghi, M. 1992. Process of building biologically based dose-response models for developmental defects. Terato/ogy46(6):573–581.
  • Geacintov, N. E., and Swenberg, C. E. 1991. Chemical, molecular biology, and genetic techniques for correlating DNA base damage induced by ionizing radiation with biological end points. Basic Life ScL 58:453–473.
  • Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sorensen, N., Dahl, R., and Jorgensen, P. J. 1997. Cognitive development in 7-year-old children with prenatal exposure to methylmercury. NeurotoxicoL Teratol. 19(6):417–428.
  • Gray, D. G. 1995. A physiologically based pharmacokinetic model for methyl mercury in the preg-nant rat and fetus. Toxicol. Appl. Pharmacol. 132(1):91–102.
  • Hanaway, J., McConnell, J. A., and Netsky, M. G. 1971. Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: An autoradiographic study of the mesen-cephalon in the rat.]. Comp. Neurol. 142:59–74.
  • Herschkowitz, N. 1988. Brain development in the fetus, neonate and infant. Biol. Neonate 54:1-19. Hoshino, K., Matsuzawa, T., and Murakami, U. 1973. Characteristics of the cell cycle of matrix cells in the mouse embryo during histogenesis of the telencephalon. Exp. Cell Res. 77:89–94.
  • Ifft, J. D. 1972. An autoradiographic study of the time of final division of neurons in rat hypothalamic nuclei.]. Comp. NeuroL 144:193–204.
  • Kavlock, R. J., and Setzer, R. W. 1996. The road to embryologically based dose-response models. Environ. Health Perspect. 104\(suppl. 1):107–121.
  • Kavlock, R. J., Allen, B. C., Faustman, E. M., and Kimmel, C. A. 1995. Dose-response assessments for developmental toxicity. IV. Benchmark doses for fetal weight changes. Fundam. Appl. ToxicoL 26:211–222.
  • Khera, K. S. 1989. Ethylenethiourea-induced hydrocephalus in vivo and in vitro with a note on the use of a constant gaseous atmosphere for rat embryo cultures. Teratology 39:277–285.
  • Kimmel, C. A., and Gaylor, D. W. 1988. Issues in qualitative and quantitative risk analysis for devel-opmental toxicology. Risk Anal. 8(1):15–20.
  • Kimmel, C. A., Wellington, D. G., Farland, W., Ross, P., Manson, J. M., Chernoff, N., Young, J. F., Selevan, S. G., Kaplan, N., Chen, C., Chitlik, L. D., Siegelscott, C. L., Valaoras, G., and Wells, S. 1989. Overview of a workshop on quantitative models for developmental toxicity risk assess-ment. Environ. Health Perspect. 79:209–215.
  • Krewski, D., and Zhu, Y. 1994. Applications of multinomial dose-response models in developmental toxicity risk assessment. Risk Anal. 14(4):613–627.
  • Kupper, L .K., Portier, C., Hogan, M. D., and Yamamoto, E. 1986. The impact of litter effects on dose-response modeling in teratology. Biometrics 42:85–98.
  • Langman, J., Shimada, M., and Rodier, P. 1972. Floxuridine and its influence on postnatal cerebellar development. Pediatr. Res. 6:758–764.
  • Langman, J., Webster, W., and Rodier, P. 1975. Morphological and behavioural abnormalities caused by insults to the CNS in the perinatal period. In Teratology: Trends and applications, eds. C. L. Berry and D. E. Poswillo, pp. 182-200. New York: Springer-Verlag.
  • Leroux, B. G., Leisenring, W. M., Moolgavkar, S. H., and Faustman, E. M. 1996. A biologically-based dose-response model for developmental toxicology. Risk Anal. 16(4):449–458.
  • Luebeck, E. G., and Moolgavkar, S. H. 1996. Biologically based cancer modeling. Drug Chem. Toxicol. 19(3):221–243.
  • Luecke, R. H., Wosilait, W. D., Pearce, B. A., and Young, J. F. 1997. A computer model and program for xenobiotic disposition during pregnancy. Comput. Methods Prog. Biomed. 53(3):201–224.
  • Marsh, D. 0., Myers, G. J., Clarkson, T. W., Am in-Zaki, L., Tikriti, S., and Majeed, M. A. 1980. Fetal methylmercury poisoning: Clinical and toxicological data on 29 cases. Ann. NeuroL 7(4):348–353.
  • Matsumoto, H., Koya, G., and Takeuchi, T. 1965. Fetal Minamata disease: A neuropathologica I study of two cases of intrauterine intoxication by a methyl mercury compound.]. NeuropathoL Exp. Neurol. 24:563–574.
  • Moolgavkar, S. H., and Luebeck, E. G. 1995. Incorporating cell proliferation kinetics into models for cancer risk assessment. Toxicology102(1-2):141–147.
  • Moolgavkar, S. H., and Venzon, D. J. 1979. Two-event model for carcinogenesis: Incidence curves of childhood and adult tumors. Math. Biosci. 47:55–79.
  • Newland, M. C., Yezhou, S., Logdberg, B., and Berlin, M. 1994. Prolonged behavioral effects of in utero exposure to lead or methyl mercury: Reduced sensitivity to changes in reinforcement contin-genc ies during behavioral transitions and in steady state. ToxicoL Appl. PharmacoL 126(1):6–15.
  • Niimi, K., Haradaa, I., Kusaka, Y., and Kishi, S. 1962. The ontogenetic development of the dien-cephalon of the mouse. Tokushima]. Exp. Med. 8:203–238.
  • Ponce, R. A., Kavanagh, T. J., Monet, N. K., Whittaker, S. G., and Faustman, E. M. 1994. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol. Appl. PharmacoL 127(1):83–90.
  • Portier, C. J., Kopp Schneider, A., and Sherman, C. D. 1996. Calculating tumor incidence rates in sto-chastic models of carcinogenesis. Math. Biosci. 135(2):129–146.
  • Pryor, G. T., Uyeno, E. T., Tilson, H. A., and Mitchell, C. L. 1983. Assessment of chemicals using a bat-tery of neurobehavioraltests: A comparative study. Neurobehav. ToxicoL Teratol. 5(1):91–117.
  • Rai, K., and Van Ryzin, J. 1985. A dose-response model for teratological experiments involving quan-tal responses. Biometrics 41(1):1–9.
  • Rodier, P. M. 1977. Correlations between prenatally-induced alterations in CNS populations and postnatal function. Teratology16:235–246.
  • Rodier, P. M. 1980. Chronology of neuron development: Animal studies and their clinical implica-tions. Dev. Med. Child NeuroL 22:525–545.
  • Rodier, P. M. 1983. Differential structural effects of three behavioral teratogens. Dev. Toxicol. Environ. ScL 11:53–60.
  • Rodier, P. M., Reynolds, S. S., and Roberts, W. N. 1979. Behavioral consequences of interference with CNS development in the early fetal period. Teratology19:327–336.
  • Rodier, P. M., Aschner, M., and Sager, P. R. 1984. Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neu robehav. Toxicol. Teratol. 6(5):379–385.
  • Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., and Romano, J. 1996. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. NeuroL 370(2): 247–261.
  • Ryan, L. 1992. The use of generalized estimating equations for risk assessment in developmental toxic-ity. Risk Anal. 12(3):439–447.
  • Schutt, W. J., Norton, S., and Jensh, R. P. 1990. Ionizing radiation and the developing brain. NeurotoxicoL Teratol. 12:249–260.
  • Sherman, C. D., and Portier, C. J. 1996. Stochastic simulation of a multistage model of carcinogene-sis. Math. Biosci. 134(1):35–50.
  • Shimada, M., and Langman, J. 1970. Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster.]. Comp. Neurol. 139:227–244.
  • Shimada, M., and Nakamura, T. 1973. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41:163–173.
  • Shuey, D. L., Lau, C., Logsdon, T. R., Zucker, R. M., Elstein, K. H., Narotsky, M. G., Setzer, R. W., Kavlock, R. J., and Rogers, J. M. 1994. Biologically based dose-response modeling in develop-mental toxicology: Biochemical and cellular sequelae of 5-fluorouracil exposure in the develop-ing rat. Toxicol. Appl. PharmacoL 126(1):129–144.
  • Shuey, D. L., Setzer, R. W., Lau, C., Zucker, R. M., Elstein, K. H., Narotsky, M. G., Kavlock, R. J., and Rogers, J. M. 1995. Biological modeling of 5-fluorouracil developmental toxicity. Toxicology 102(1-2):207–213.
  • Smith, C. G., Grady, J. E., and Northam, J. I. 1963. Relationship between cytotoxicity in vitro and whole animal toxicity. Cancer Chemother. Rep. 30:9–12.
  • Sulik, K. K., and Sadler, T. W. 1993. Postulated mechanisms underlying the development of neural tube defects. Ann. NY Acad. ScL 678:8–21.
  • Taber Pierce, E. 1967. Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study.]. Comp. NeuroL 131:27–54.
  • Turner, D. L., and Cepko, C. L. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136.
  • Wallace, R. B., and Altman, J. 1970a. Behavioral effects of neonatal irradiation of the cerebellum. I. Qualitative observation before and after weaning. Dev. Psychobiol. 2:257–265.
  • Wallace, R. B., and Altman, J. 1970b. Behavioral effects of neonatal irradiation of the cerebellum. II. Qualitative studies in young-adultand adult rats. Dev. Psychobiol. 2:266–272.
  • Weinberg, N. Z. 1997. Cognitive and behavioral deficits associated with parental alcohol use.]. Am. Acad. Child Adolescent Psychiatry36(9):1177–1186.
  • Williams, D. A. 1987. Dose-response models for teratologic experiments. Biometrics 43:1013-1016. Wlodarczyk, B. J., Bennett, G. D., Calvin, J. A., and Finnell, R. H. 1996. Arsenic-induced neural tube defects in mice: Alterations in cell cycle gene expression. Rep rod. Toxicol. 10(6):447–454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.