497
Views
0
CrossRef citations to date
0
Altmetric
Breeding/Genetics

Insights from the early generations of the Swedish rainbow trout (Oncorhynchus mykiss) breeding program

, , &
Pages 88-99 | Received 04 Apr 2023, Accepted 02 Aug 2023, Published online: 15 Aug 2023

References

  • Bijma, P. & Woolliams, J. A. (2000). Prediction of rates of inbreeding in populations selected on best linear unbiased prediction of breeding value. Genetics, 156, 361–373.
  • Boudry, P., Allal, F., Aslam, M. L., Bargelloni, L., Bean, T. P., et al. (2021). Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquaculture Reports, 20, 100700.
  • Brofeldt, P. (1935). En enkel metod att beräkna antalet romkorn per liter [A simple method for calculating the number of fish eggs per litre]. Svensk Fiskeri Tidsskrift, 44, 158–160.
  • Chavanne, H., Janssen, K., Hofherr, J., Contini, F., Haffray, P., et al. (2016). A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquaculture International, 24, 1287–1307.
  • D’Agaro, E., Favaro, A., Matiussi, S., Gibertoni, P. P. & Esposito, S. (2021). Genomic selection in salmonids: new discoveries and future perspectives. Aquaculture International, 29 (5), 2259–2289.
  • Donaldson, L. R. & Olson, P. R. (1957). Development of rainbow trout brood stock by selective breeding. Transactions of the American Fisheries Society, 85, 93–101.
  • Falconer, D. S. & Mackay, F. C. (1996). Introduction to Quantitative Genetics (England: Prentice Hall, Harlow).
  • Fu, J., Shen, Y., Xu, X. & Li, J. (2016). Genetic parameter estimates for growth of grass carp, Ctenopharyngodon idella, at 10 and 18months of age. Aquaculture, 450, 342–348.
  • Gallardo, J. A., Lhorente, J. P. & Neira, R. (2010). The consequences of including non-additive effects on the genetic evaluation of harvest body weight in coho salmon (Oncorhynchus kisutch). Genetics Selection Evolution, 42, 1–8.
  • Gjedrem, T. (2005). Breeding plans. Selection and Breeding Programs in Aquaculture, 100, 251–277.
  • Gjedrem, T. (2010). The first family-based breeding program in aquaculture. Reviews in Aquaculture, 2, 2–15.
  • Gjedrem, T., & Baranski, M. (2009) Selective breeding in aquaculture: An introduction. Springer, 221.
  • Gjedrem, T. & Rye, M. (2016). Selection response in fish and shellfish: A review. Reviews in Aquaculture, 10 (1), 168–179.
  • Gonen, S., Baranski, M., Thorland, I., Norris, A., Grove, H., et al. (2015). Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in atlantic salmon (Salmo salar). Heredity (Edinb), 115 (5), 405–14.
  • Haffray, P., Enez, F., Bugeon, J., Chapuis, H., Dupont-Nivet, M., Chatain, B., & Vandeputte, M. (2018). Accuracy of BLUP breeding values in a factorial mating design with mixed families and marker-based parentage assignment in rainbow trout Oncorhynchus mykiss. Aquaculture, 490, 350–354.
  • Haffray, P., Vandeputte, M., Petit, V., Pincent, C., Chatain, B., et al. (2012). Minimizing maternal effect in salmonid families mixed since eyed stages and a posteriori DNA-pedigreed. Livestock Science, 150 (1-3), 170–178.
  • Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423–447.
  • Janssen, K., Chavanne, H., Berentsen, P. & Komen, H. (2017). Impact of selective breeding on European aquaculture. Aquaculture, 472, 8–16.
  • Jordbruksverket, Vattenbruk. (2022). URL: https://jordbruksverket.se/5.6ba10a0c182c7e64f1fcf3c2.html#h-Saluvarde. Date of access: 06-08-2023.
  • Kause, A., Ritola, O., Paananen, T., Mäntysaari, E. & Eskelinen, U. (2003). Selection against early maturity in large rainbow trout Oncorhynchus mykiss: The quantitative genetics of sexual dimorphism and genotype-by- environment interactions. Aquaculture, 228, 53–68.
  • Kause, A., Ritola, O., Paananen, T., Wahlroos, H., & Mäntysaari, E. A. (2005). Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture, 247 (1-4), 177–187.
  • Leeds, T. D., Vallejo, R. L., Weber, G. M., Gonzalez-Pena, D. & Silverstein, J. T. (2016). Response to five generations of selection for growth performance traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 465, 341–351.
  • Le Rouzic, A., Álvarez-Castro, J. M. & Carlborg, Ö. (2008). Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics, 179, 1591–1599.
  • Martinez, V., Kause, A., Mäntysaari, E. & Mäki-Tanila, A. (2006a). The use of alternative breeding schemes to enhance genetic improvement in rainbow trout: II. Two-stage selection. Aquaculture, 254, 195–202.
  • Martinez, V., Kause, A., Mäntysaari, E. & Mäki-Tanila, A. (2006b). The use of alternative breeding schemes to enhance genetic improvement in rainbow trout (Oncorhynchus mykiss): I. One-stage selection. Aquaculture, 254, 182–194.
  • Misztal, I., Tsuruta, S., Lourenco, D. A. L., Masuda, Y., Aguilar, I., et al. (2018). Manual for BLUPF90 family of programs (Athens: University of Georgia).
  • Mylonas, C. C., Fostier, A. & Zanuy, S. (2010). Broodstock management and hormonal manipulations of fish reproduction. General and Comparative Endocrinology, 165, 516–534.
  • Nielsen, H. M., Sonesson, A. K., Yazdi, H. & Meuwissen, T. H. E. (2009). Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes. Aquaculture, 289, 259–264.
  • Nilsson, J., Backström, T., Stien, L. H., Carlberg, H., Jeuthe, H., et al. (2016). Effects of age and rearing environment on genetic parameters of growth and body weight and heritability of skin pigmentation in Arctic charr (Salvelinus alpinus L. Aquaculture, 453, 67–72.
  • Niva, T. & Jokela, J. (2000). Phenotypic correlation of juvenile growth rate between different consecutive foraging environments in a salmonid fish: A field experiment. Evolutionary Ecology, 14, 111–126.
  • Palaiokostas, C., Jeuthe, H. & De Koning, D. J. (2021). Assessing the potential of improving growth and survival to the eyed stage in selectively bred Arctic charr (Salvelinus alpinus). Journal of Animal Breeding and Genetics, 138, 326–337.
  • Rameez, R., Jahageerdar, S., Chanu, T. I., Jayaraman, J. & Bangera, R. (2020). Genetic variation among full-sib families and the effect of non-genetic factors on growth traits at harvest in Clarias magur (Hamilton, 1822). Aquaculture Reports, 18, 100411.
  • Sae-Lim, P., Kause, A., Lillehammer, M. & Mulder, H. A. (2017). Estimation of breeding values for uniformity of growth in atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation. Genetics Selection Evolution, 49, 33.
  • Sae-Lim, P., Komen, H., Kause, A., Martin, K. E., Crooijmans, R., et al. (2013). Enhancing selective breeding for growth, slaughter traits and overall survival in rainbow trout (Oncorhynchus mykiss). Aquaculture, 372–375, 89–96.
  • Saura, M., Villanueva, B., Fernández, J. & Toro, M. A. (2017). Effect of assortative mating on genetic gain and inbreeding in aquaculture selective breeding programs. Aquaculture, 472, 30–37.
  • SCB. (2023). Vattenbruk 2021 aktiva anläggningar. Vattenbruk, 2021, 1–6.
  • Su, G. S., Liljedahl, L. E. & Gall, G. A. E. (2002). Genetic correlations between body weight at different ages and with reproductive traits in rainbow trout. Aquaculture, 213, 85–94.
  • Sylvén, S. & Elvingson, P. (1992). Comparison of rainbow trout (Oncorhynchus mykiss) strains for body weight, length and age at maturity in different Swedish production systems. Aquaculture, 104, 37–50.
  • Teletchea, F. & Fontaine, P. (2014). Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries, 15, 181–195.
  • Tsai, H. Y., Hamilton, A., Tinch, A. E., Guy, D. R., Gharbi, K., et al. (2015). Genome wide association and genomic prediction for growth traits in juvenile farmed atlantic salmon using a high density SNP array. BMC Genomics, 16, 1–9.
  • Vallejo, R. L., Cheng, H., Fragomeni, B. O., Gao, G., Silva, R. M. O., et al. (2021). The accuracy of genomic predictions for bacterial cold water disease resistance remains higher than the pedigree-based model one generation after model training in a commercial rainbow trout breeding population. Aquaculture, 545, 737164.
  • Vallejo, R. L., Fragomeni, B. O., Cheng, H., Gao, G., Long, R. L., et al. (2020). Assessing accuracy of genomic predictions for resistance to infectious hematopoietic necrosis virus with progeny testing of selection candidates in a commercial rainbow trout breeding population. Frontiers in Veterinary Science, 7, 590048.
  • Weber, G. M., Martin, K., Kretzer, J., Ma, H. & Dixon, D. (2016). Effects of incubation temperatures on embryonic and larval survival in rainbow trout, Oncorhynchus mykiss. Journal of Applied Aquaculture, 28, 285–297.
  • Yano, A., Nicol, B., Jouanno, E., Quillet, E., Fostier, A., et al. (2013). The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evolutionary Applications, 6, 486–496.
  • Yoshida, G. M., Bangera, R., Carvalheiro, R., Correa, K., Figueroa, R., et al. (2018). Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 Genes|Genomes|Genetics, 8, 719–726.