908
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Environmental parameters and management as factors affecting greenhouse gas emissions from clay soil

, , , , &
Article: 2290828 | Received 27 Sep 2023, Accepted 30 Nov 2023, Published online: 18 Dec 2023

References

  • Abdalla M, Osborne B, Lanigan G, Forristal D, Williams M, Smith P, Jones MB. 2013. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29:199–209. doi:10.1111/sum.12030.
  • Badagliacca G, Benítez E, Amato G, Badalucco L, Giambalvo D, Laudicina VA, Ruisi P. 2018. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci Tot Environ. 639:350–359. doi:10.1016/j.scitotenv.2018.05.157.
  • Behnke GD, Villamil MB. 2019. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 241. doi:10.1016/j.fcr.2019.107580.
  • Bregaglio S, Mongiano G, Ferrara RM, Ginaldi F, Lagomarsino A, Rana G. 2022. Which are the most favourable conditions for reducing soil CO2 emissions with no-tillage? Results from a meta-analysis. Int Soil Water Conserv Res. 10(3):497–506. doi:10.1016/j.iswcr.2022.05.003.
  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans Royal Soc B Biol Sci. 368(1621). doi:10.1098/rstb.2013.0122.
  • Chapuis-Lardy L, Wrage N, Metay A, Chotte J, Bernoux M. 2007. Soils, a sink for N2O? A review. Global Change Biol. 13(1):1–17. doi:10.1111/j.1365-2486.2006.01280.x.
  • Chataut G, Bhatta B, Joshi D, Subedi K, Kafle K. 2023. Greenhouse gases emission from agricultural soil: a review. J Agric Food Res. 11. doi:10.1016/j.jafr.2023.100533.
  • Döring T. 2015. Grain legume cropping systems in temperate climates. In: Handbook of plant breeding. p. 401–434. doi:10.1007/978-1-4939-2797-5_13.
  • EC. 2022. Factsheet - a Greener and Fairer CAP [online]. European Commission [viewed 26 September 2023]. Available from: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en.
  • EC. 2023. Approved 28 CAP Strategic Plans (2023–2027). Summary overview for 27 Member States [online]. European Commission [viewed 26 September 2023]. Available from: https://agriculture.ec.europa.eu/system/files/2023-06/approved-28-cap-strategic-plans-2023-27.pdf.
  • EEA. 2022. Greenhouse gas emissions from agriculture in Europe [online]. European Environment Agency [viewed 25 September 2023]. Available from: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture.
  • FAO. 2000. Manual on integrated soil management and conservation practices (Vol. 8) [online]. International Institute of Tropical Agriculture, Food and Agriculture Organization of the United Nations [viewed 25 September 2023]. Available from: https://vtechworks.lib.vt.edu/bitstream/handle/10919/65457/390_FAO_l_w_bulletin_8.pdf?sequence=1.
  • FAO. 2016. Save and Grow in practice: maize, rice, wheat. A guide to sustainable cereal production [online]. Rome: Italy. Food and Agriculture Organization of The United Nations [viewed 25 September 2023]. Available from: https://www.fao.org/3/i4009e/i4009e.pdf.
  • FAO. 2021. The share of food systems in total greenhouse gas emissions. Global, regional and country trends 1990–2019. Rome: Italy. FAOSTAT Analytical brief series No. 31. 12 p. e-ISSN 2709-0078.
  • Fiorini A, Boselli R, Maris SC, Santelli S, Ardenti F, Capra F, Tabaglio V. 2020. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric Ecosyst Environ. 296:106926, ISSN 106926-8809. doi:10.1016/j.agee.2020.106926.
  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, et al. 2007. Changes in atmospheric constituents and in radiative forcing. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [online]. New York: USA: Cambridge University Press [viewed 25 September 2023]. Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf.
  • Hobbs P. 2007. Paper presented at international workshop on increasing wheat yield potential, Cimmyt, Obregon, Mexico, 20–24 MARCH 2006 conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci. 145(2):127. doi:10.1017/S0021859607006892.
  • Imer D, Merbold L, Eugster W, Buchmann N. 2013. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences. 10(9):5931–5945. doi:10.5194/bg-10-5931-2013.
  • IPCC. 2019. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories [online]. Switzerland. Intergovernmental Panel on Climate Change [viewed 25 September 2023]. Available from: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html.
  • IPCC. 2023. AR6 Synthesis Report: Climate Change 2023 [online]. Panel’s 58th Session, 13–19 March 2023. Interlaken: Switzerland. Intergovernmental Panel on Climate Change [viewed 25 September 2023]. Available from: https://www.ipcc.ch/report/sixth-assessment-report-cycle/.
  • IPCC. 2023. Summary for Policymakers [online]. Geneva: Switzerland. Climate change 2023: synthesis report. contribution of working groups I, Ii and III to the sixth assessment report of the intergovernmental panel on climate change, p. 1–34 [viewed 25 September 2023]. Available from: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf.
  • Jiang C, Yu G, Fang H, Cao G, Li Y. 2010. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environ. 44(24):2920–2926. doi:10.1016/j.atmosenv.2010.03.030.
  • Lal R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci. 22(2):151–184. doi:10.1080/713610854.
  • Liu C, Plaza-Bonilla D, Coulter JA, Kutcher HR, Beckie HJ, Wang L, Floc’h JB, Hamel C, Siddique KHM, Li L, et al. (2022). Chapter Six - Diversifying crop rotations enhances agroecosystem services and resilience. In: Sparks DL, editor. Advances in agronomy. Academic Press; Vol. 173, p. 299–335, ISSN 0065-2113, ISBN 9780323989558. doi:10.1016/bs.agron.2022.02.007.
  • Lötjönen S, Ollikainen M. 2017. Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions? Rev Agric Food Environ Stud. 98(4):283–312. doi:10.1007/s41130-018-0063-z.
  • LVĢMC. n.d. Climate of Latvia, [online]. Latvijas Vides, ģeoloģijas un Meteoroloģijas centrs. Latvian Environment, Geology and Meteorology Centre [viewed 25 September 2023]. Available from: https://videscentrs.lvgmc.lv/lapas/latvijas-klimats.
  • Martin-Rueda I, Muñoz-Guerra L, Yunta F, Esteban E, Tenorio JL, Lucena JJ. 2007. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92(1–2):1–9. doi:10.1016/j.still.2005.10.006.
  • Mei K, Wang Z, Huang H, Zhang C, Shang X, Dahlgren R, Zhang M, Xia F. 2018. Stimulation of N2O emission by conservation tillage management in agricultural lands: a meta-analysis. Soil Tillage Res. 182:86–93. doi:10.1016/j.still.2018.05.006.
  • Mitra S, Waßmann R, Jain M, Pathak H. 2002. Properties of rice soils affecting methane production potentials: 2. Differences in topsoil and subsoil. Nutr Cycling Agroecosyst. 64(1/2):183–191. doi:10.1023/A:1021175404418.
  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. 2016. Greenhouse gas emissions from soils—a review. Geochemistry. 76(3):327–352. doi:10.1016/j.chemer.2016.04.002.
  • Peterson BL, Hanna LLH, Steiner JL. 2019. Reduced soil disturbance: positive effects on greenhouse gas efflux and soil N losses in winter wheat systems of the southern plains. Soil Tillage Res. 191:317–326. doi:10.1016/j.still.2019.03.020.
  • Plaza-Bonilla D, Nogué-Serra I, Raffaillac D, Cantero-Martínez C, Justes E. 2018. Carbon footprint of cropping systems with grain legumes and cover crops: a case-study in SW France. Agric Syst. 167:92–102. doi:10.1016/j.agsy.2018.09.004.
  • Plaza-Bonilla D, Nolot JM, Raffaillac D, Justes E. 2017. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur J Agronomy. 82(Part B):331–341, ISSN 1161-0301. doi:10.1016/j.eja.2016.05.010.
  • Powlson D, Stirling C, Jat M, Gerard BG, Palm CA, Sanchez PA, Cassman KG. 2014. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change. 4:678–683. doi:10.1038/nclimate2292.
  • Pu C, Chen J-S, Wang H-D, Virk AL, Zhao X, Zhang H-L. 2022. Greenhouse gas emissions from the wheat-maize cropping system under different tillage and crop residue management practices in the North China Plain. Sci Tot Environ. 819. doi:10.1016/j.scitotenv.2022.153089.
  • Renwick LL, Deen WM, Silva LCR, Gilbert ME, Maxwell TM, Bowles TM, Gaudin ACM. 2021. Long-term crop rotation diversification enhances maize drought resistance through soil organic matter. Environ Res Lett. 16(8). doi:10.1088/1748-9326/ac1468.
  • Rigon JPG, Calonego JC. 2020. Soil carbon fluxes and balances of crop rotations under long-term no-till. Carbon Balance Manage. 15:19. doi:10.1186/s13021-020-00154-3.
  • Shakoor A, Shahbaz M, Farooq TH, Sahar NE, Shahzad SM, Altaf MM, Ashraf M. 2021. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci Tot Environ. 750:142299. doi:10.1016/j.scitotenv.2020.142299.
  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A. 2018. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci. 69(1):142299–142320. doi:10.1111/ejss.12539.
  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, et al. 2008. Greenhouse gas mitigation in agriculture. Philos Trans Royal Soc B Biol Sci. 363(1492):789–813. doi:10.1098/rstb.2007.2184.
  • Tan Y, Wu D, Bol R, Wu W, Meng F. 2019. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. Agric Ecosyst Environ. 272:266–275. doi:10.1016/j.agee.2018.12.001.
  • Trumbore SE. 1997. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci. 94(16):8284–8291. doi:10.1073/pnas.94.16.8284.
  • Valujeva K, Pilecka J, Frolova O, Berzina L, Grinfelde I. 2017. Measurement time estimation of CO2, CH4, N2O and NH3 in closed chambers and recirculation system with picarro g2508 analyser. Int Multidiscip Sci GeoConference Surveying Geol Mining Ecol Manage SGEM. 41(41):519–526. doi:10.5593/sgem2017/41/S19.066.
  • Valujeva K, Pilecka-Ulcugaceva J, Skiste O, Liepa S, Lagzdins A, Grinfelde I. 2022. Soil tillage and agricultural crops affect greenhouse gas emissions from Cambic Calcisol in a temperate climate. Acta Agric Scand Sect B — Soil Plant Sci. 72(1):835–846. doi:10.1080/09064710.2022.2097123.
  • Van den Bygaart AJ, Angers DA. 2006. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can J Soil Sci. 86(3):465–471. doi:10.4141/S05-106.
  • Venter ZS, Jacobs K, Hawkins H. 2016. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia. 59(4):215–223. doi:10.1016/j.pedobi.2016.04.001.
  • Venterea RT, Halvorson AD, Kitchen NR, Liebig MA, Cavigelli MA, Del Grosso SJ, Collins H. 2012. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front Ecol Environ. 10(10):562–570. doi:10.1890/120062.
  • Virk AL, Liu WS, Chen Z, N’Dri Bohoussou Y, Cheema MA, Khan KS, Zhao X, Zhang HL. 2022. Effects of different tillage systems and cropping sequences on soil physicochemical properties and greenhouse gas emissions. Agric Ecosyst Environ. 335:108010, ISSN 108010-8809. doi:10.1016/j.agee.2022.108010.
  • Wagner SW, Reicosky DC, Alessi RS. 1997. Regression models for calculating Gas fluxes measured with a closed chamber. Agronomy J. 89:279–284. doi:10.2134/agronj1997.00021962008900020021x.
  • Wang C, Zhao J, Feng Y, Shang M, Bo X, Gao Z, Chen F, Chu Q. 2021a. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems. Agric Water Manage. 248:106762, ISSN 106762-3774. doi:10.1016/j.agwat.2021.106762.
  • Wang C, Amon B, Schulz K, Mehdi B. 2021b. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review. Agronomy. 11:770. doi:10.3390/agronomy11040770.
  • Yang Y, Ti J, Zou J, Wu Y, Rees RM, Harrison MT, Li W, Huang W, Hu S, Liu K, et al. 2023. Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields. Agric Ecosyst Environ. 342:108220, ISSN 108220-8809. doi:10.1016/j.agee.2022.108220.
  • Yue K, Fornara DA, Heděnec P, Wu Q, Peng Y, Peng X, Ni X, Wu F, Peñuelas J. 2023. No tillage decreases GHG emissions with no crop yield tradeoff at the global scale. Soil Tillage Res. 228:105643, ISSN 0167-1987. doi:10.1016/j.still.2023.105643.