565
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alfalfa cropping is superior to cotton and rapeseed cropping in improving the quality and microbial diversity of reclaimed saline soils

ORCID Icon, &
Article: 2298970 | Received 15 Sep 2023, Accepted 19 Dec 2023, Published online: 07 Jan 2024

References

  • Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma. 319:156–166. doi:10.1016/j.geoderma.2018.01.010.
  • Al-Farsi SM, Nawaz A, Nadaf SK, Al-Sadi AM, Siddique KH, Farooq M. 2020. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop Pasture Sci. 71(5): 411–428. doi:10.1071/CP20033.
  • Chávez-Romero Y, Navarro-Noya YE, Reynoso-Martínez SC, Sarria-Guzmán Y, Govaerts B, Nele V, et al. 2016. 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 159:1–8. doi:10.1016/j.still.2016.01.007.
  • Cheng ZB, Chen Y, Zhang FH. 2018a. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China. Sci Total Environ. 630:799–808. doi:10.1016/j.scitotenv.2018.02.259.
  • Cheng ZB, Zhang FH, Gale WJ, Wang W, Sang W, Yang H. 2018b. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China. Can J Microbiol. 64(1):28–40. doi:10.1139/cjm-2017-0362.
  • Collins AL, Burak E, Harris P, Pulley S, Cardenas L, Tang Q. 2019. Field scale temporal and spatial variability of δ13C, δ15N, TC and TN soil properties: implications for sediment source tracing. Geoderma. 333:108–122. doi:10.1016/j.geoderma.2018.07.019.
  • Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. 2017. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 31(12):2330–2343. doi:10.1111/1365-2435.12924.
  • Ding LJ, Su JQ, Li H, Zhu YG, Cao ZH. 2017. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol Biochem. 104:59–67. doi:10.1016/j.soilbio.2016.10.013.
  • Du Y, Ke X, Guo X, Cao G, Zhou H. 2019. Soil and plant community characteristics under long-term continuous grazing of different intensities in an alpine meadow on the Tibetan Plateau. Biochem Syst Ecol. 85:72–75. doi:10.1016/j.bse.2019.05.012.
  • Elgharably A, Benes S. 2021. Alfalfa biomass yield and nitrogen fixation in response to applied mineral nitrogen under saline soil conditions. J Soil Sci Plant Nutr. 21:744–755. doi:10.1007/s42729-020-00397-6.
  • Franco-Otero VG, Soler-Rovira P, Hernández D, López-de-Sá EG, Plaza C. 2012. Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol Fertil Soils. 48(2):205–216. doi:10.1007/s00374-011-0620-y.
  • Hassani A, Azapagic A, Shokri N. 2020. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc Natl Acad Sci USA. 117(52):33017–33027. doi:10.1073/pnas.2013771117.
  • He F, Wang G, Wang L, Li Z, Tong Z, Wang Y, Li X. 2022. Effects of organic base fertilizer and inorganic topdressing on alfalfa productivity and the soil bacterial community in saline soil of the huanghe river delta in China. Agronomy. 12(11):2811. doi:10.3390/agronomy12112811.
  • Hua K, Zhang W, Guo Z, Wang D, Oenema O. 2016. Evaluating crop response and environmental impact of the accumulation of phosphorus due to long-term manuring of vertisol soil in northern China. Agric Ecosyst Environ. 219:101–110. doi:10.1016/j.agee.2015.12.008.
  • Ishaq SL, Johnson SP, Miller ZJ, Lehnhoff EA, Olivo S, Yeoman CJ, et al. 2017. Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb Ecol. 73(2):417–434. doi:10.1007/s00248-016-0861-2.
  • Ma Z, Li P, Yang C, Feng Z, Feng H, Zhang Y, et al. 2023. Soil bacterial community response to continuous cropping of cotton. Front Microbiol. 14:1125564. doi:10.3389/fmicb.2023.1125564.
  • Marshall CB, McLaren JR, Turkington R. 2011. Soil microbial communities resistant to changes in plant functional group composition. Soil Biol Biochem. 43(1):78–85. doi:10.1016/j.soilbio.2010.09.016.
  • Moorhead DL, Sinsabaugh RLA. 2006. Theoretical model of litter decay and microbial interaction. Ecol Monogr. 76(2):151–174. doi:10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2.
  • Neupane S, Goyer C, Zebarth BJ, Sheng L, Whitney S. 2019. Soil bacterial communities exhibit systematic spatial variation with landform across a commercial potato field. Geoderma. 335:112–122. doi:10.1016/j.geoderma.2018.08.016.
  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 183:26–41. doi:10.1016/j.micres.2015.11.007.
  • Rath KM, Fierer N, Murphy DV, Rousk J. 2019. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 13(3):836–846. doi:10.1038/s41396-018-0313-8.
  • Su JQ, Ding LJ, Xue K, Yao HY, Zhu YG. 2015. Long-term balanced fertilization improves the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol. 24:136–150. doi:10.1111/mec.13010.
  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS. 2010. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun. 399:492–497. doi:10.1016/j.bbrc.2010.07.094.
  • Wang C, Gao Q, Wang X, Yu M. 2016. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China. Sci Rep. 6(1):37658. doi:10.1038/srep37658.
  • Wang K, Zhang Y, Tang Z, Shangguan Z, Chang F, Chen Y, et al. 2019. Effects of grassland afforestation on structure and function of soil bacterial and fungal communities. Sci Total Environ. 676:396–406. doi:10.1016/j.scitotenv.2019.04.259.
  • Weih M, Hamnér K, Pourazari F. 2018. Analyzing plant nutrient uptake and utilization efficiencies: comparison between crops and approaches. Plant Soil. 430:7–21. doi:10.1007/s11104-018-3738-y.
  • Xi H, Shen J, Qu Z, Yang D, Liu S, Nie X, Zhu L. 2019. Effects of long-term cotton continuous cropping on soil microbiome. Sci Rep. 9:18297. doi:10.1038/s41598-019-54771-1.
  • Xu A, Liu J, Guo Z, Wang C, Pan K, Zhang F, Pan X. 2021. Soil microbial community composition but not diversity is affected by land-use types in the agro-pastoral ecotone undergoing frequent conversions between cropland and grassland. Geoderma. 401(3):115165. doi:10.1016/j.geoderma.2021.115165.
  • Yang H, Zhang F, Chen Y, Xu T, Cheng Z, Liang J. 2016. Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability. 8(11):1183. doi:10.3390/su8111183.
  • Yang L, Tan L, Zhang F, Gale WJ, Cheng Z, Sang W. 2018. Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields. Can J Microbiol. 64(3):167–181. doi:10.1139/cjm-2017-0443.
  • Yin F, Zhang F. 2022. Reclamation of abandoned saline-alkali soil increased soil microbial diversity and degradation potential. Plant Soil. 477:521–538. doi:10.1007/s11104-022-05451-z.
  • Zhang L, Gu J, Wang X, Sun W, Yin Y, Sun Y, et al. 2017. Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. Bioresour Technol. 244:252–260. doi:10.1016/j.biortech.2017.07.035.
  • Zhang W, Du Y. 2018. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing. Arch Microbiol. 200:653–662. doi:10.1007/s00203-018-1476-4.
  • Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, et al. 2014. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol. 67(2):443–453. doi:10.1007/s00248-013-0322-0.