800
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrochar from dairy sludge as phosphorus fertiliser affects greenhouse gas emissions and maize yield

, ORCID Icon, , , &
Article: 2310276 | Received 21 Nov 2023, Accepted 19 Jan 2024, Published online: 05 Feb 2024

References

  • Ashekuzzaman SM, Fenton O, Meers E, Forrestal PJ. 2021. Differing phosphorus crop availability of aluminium and calcium precipitated dairy processing sludge potential recycled alternatives to mineral phosphorus fertiliser. Agronomy. 11:427. doi:10.3390/agronomy11030427.
  • Ashekuzzaman SM, Forrestal P, Richards KG, Daly K, Fenton O. 2021. Grassland phosphorus and nitrogen fertiliser replacement value of dairy processing dewatered sludge. Sustain Product Consumpt. 25:363–373. doi:10.1016/j.spc.2020.11.017.
  • Ashiq W, Nadeem M, Ali W, Zaeem M, Wu J, Galagedara L, Thomas R, Kavanagh V, Cheema M. 2020. Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate. Environ Pollut. 265:114869. doi:10.1016/j.envpol.2020.114869.
  • Bargmann I, Rillig MC, Kruse A, Greef J-M, Kücke M. 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J Plant Nutr Soil Sci. 177:48–58. doi:10.1002/jpln.201300069.
  • Busch D, Kammann C, Grünhage L, Müller C. 2012. Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual. 41:1023–1032. doi:10.2134/jeq2011.0122.
  • Davidson EA, Kanter D. 2014. Inventories and scenarios of nitrous oxide emissions. Environ Res Lett. 9:105012. doi:10.1088/1748-9326/9/10/105012.
  • de Jager M, Giani L. 2021. An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar. 3:349–365. doi:10.1007/s42773-021-00089-z.
  • Ebrahimi M, Friedl J, Vahidi M, Rowlings DW, Bai Z, Dunn K, O'Hara IM, Zhang Z. 2022. Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. Chemosphere. 307:135792. doi:10.1016/j.chemosphere.2022.135792.
  • European Commission. 2021. European Green Deal – delivering on our targets. Luxembourg: Publications Office of the European Union. doi:10.2775/595210.
  • FAO. (2022). Soils for nutrition: state of the art. Rome. doi:10.4060/cc0900en.
  • Fuertes AB, Arbestain MC, Sevilla M, Maciá-Agulló JA, Fiol S, López R, … Macìas F. 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Res. 48:618–626. doi:10.1071/SR10010.
  • Hagemann N, Joseph S, Schmidt H, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW, … Sciences C. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat Commun. 8:1089–1101. doi:10.1038/s41467-017-01123-0.
  • Hu Y, Khomenko O, Shi W, Velasco-Sánchez Á, Ashekuzzaman SM, Bennegadi-Laurent N, Daly K, Fenton O, Healy MG, Leahy JJ, et al. 2021. Systematic review of dairy processing sludge and secondary STRUBIAS products used in agriculture. Front Sustain Food Syst. 5. doi:10.3389/fsufs.2021.763020.
  • Hu Y, Thomsen TP, Fenton O, Sommer SG, Shi W, Cui W. 2023. Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. Environ Res. 216:114543. doi:10.1016/j.envres.2022.114543.
  • Hunt D, Bittman S, Chantigny M, Lemke R. 2019. Year-round N2O emissions from long-term applications of whole and separated liquid dairy slurry on a perennial grass sward and strategies for mitigation. Front Sustain Food Syst. 3:86. doi:10.3389/fsufs.2019.00086.
  • IPCC. 2022. Climate change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge: Cambridge University Press. doi:10.1017/9781009157926.
  • IPCC. 2019. 2019 refinement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories [Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds)]. IPCC, Switzerland.
  • Jandl G, Eckhardt K-U, Bargmann I, Kücke M, Greef J-M, Knicker H, Leinweber P. 2013. Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil–plant system. J Environ Qual. 42:199–207. doi:10.2134/jeq2012.0155.
  • Kammann C, Ratering S, Eckhard C, Müller C. 2012. Biochar and hydrochar effects on greenhouse Gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual. 41:1052–1066. doi:10.2134/jeq2011.0132.
  • Khosravi A, Zheng H, Liu Q, Hashemi M, Tang Y, Xing B. 2022. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem Eng J. 430:133142. doi:10.1016/j.cej.2021.133142.
  • Leytem AB, Moore AD, Dungan RS. 2019. Greenhouse gas emissions from an irrigated crop rotation utilizing dairy manure. Soil Sci Soc Am J. 83:137–152. doi:10.2136/sssaj2018.06.0216.
  • Lombardi B, Orden L, Varela P, Garay M, Iocoli GA, Montenegro A, … Moral R. 2022. Is dairy effluent an alternative for maize crop fertigation in semiarid regions? An approach to agronomic and environmental effects. Animals (Basel). 12:2025. doi:10.3390/ani12162025.
  • López-Mosquera ME, Carral ME. 2000. Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resour, Conserv Recycl. 30:95–109.
  • Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu Y-G. 2023. Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environ Sci Technol. 57(31):11357–11372. doi:10.1021/acs.est.3c02620.
  • Malghani S, Gleixner G, Trumbore SE. 2013. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem. 62:137–146. doi:10.1016/j.soilbio.2013.03.013.
  • Malghani S, Jüschke E, Baumert J, Thuille A, Antonietti M, Trumbore S, Gleixner G. 2015. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biol Fertil Soils. 51:123–134. doi:10.1007/s00374-014-0980-1.
  • Mosier AR, Halvorson AD, Reule CA, Liu XJ. 2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual. 35:1584–1598. doi:10.2134/jeq2005.0232.
  • Nair D, Baral KR, Abalos D, Strobel BW, Petersen SO. 2020. Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: mitigation potentials of 3, 4-dimethylpyrazole phosphate (DMPP). J Environ Manag. 260:110165. doi:10.1016/j.jenvman.2020.110165.
  • Pedersen AR, Petersen SO, Schelde K. 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci. 61:888–902. doi:10.1111/j.1365-2389.2010.01291.x.
  • Pedersen IF, Nyord T, Sørensen P. 2022. Tine tip width and placement depth by row-injection of cattle slurry influence initial leaf N and P concentrations and final yield of silage maize. Eur J Agron. 133:126418. doi:10.1016/j.eja.2021.126418.
  • Petersen SO, Henriksen K, Blackburn TH. 1991. Coupled nitrification-denitrification associated with liquid manure in a gel-stabilized model system. Biol Fertil Soils. 12:19–27. doi:10.1007/BF00369383.
  • Petersen SO, Hoffmann CC, Schäfer CM, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SB, Greve MH. 2012. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences. 9:403–422. doi:10.5194/bg-9-403-2012.
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org.
  • Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke H-G, Titirici M-M, Antonietti M. 2010. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol. 45:238–242. doi:10.1016/j.apsoil.2010.04.011.
  • Sevilla M, Maciá-Agulló JA, Fuertes AB. 2011. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy. 35:3152–3159. doi:10.1016/j.biombioe.2011.04.032.
  • Schimmelpfennig S, Müller C, Grünhage L, Koch C, Kammann C. 2014. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland – effects on greenhouse gas emissions and plant growth. Agric Ecosyst Environ. 191:39–52. doi:10.1016/j.agee.2014.03.027.
  • Shi W, Fenton O, Ashekuzzaman SM, Daly K, Leahy JJ, Khalaf N, Hu Y, Chojnacka K, Numviyimana C, Healy MG. 2022. An examination of maximum legal application rates of dairy processing and associated STRUBIAS fertilising products in agriculture. J Environ Manag. 301:113880. doi:10.1016/j.jenvman.2021.113880.
  • Smith A, Sommer SG, Taghizadeh-Toosi A. 2023. Reduced climate impacts of dairy sludge management by introducing hydrothermal carbonization. Clean Energy Sustain. 1:1. doi:10.35534/ces.2023.10003.
  • Sommer SG, Knudsen L. 2021. Impact of Danish Livestock and Manure Management Regulations on Nitrogen Pollution, Crop Production, and Economy. Front. Sustain. 2:658231. doi:10.3389/frsus.2021.658231.
  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM. 2012. Biochar adsorbed ammonia is bioavailable. Plant Soil. 350:57–69. doi:10.1007/s11104-011-0870-3.
  • Wang Z, Zong H, Zheng H, Liu G, Chen L, Xing B. 2015. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere. 138:576–583. doi:10.1016/j.chemosphere.2015.06.084.
  • Yang J, Jia X, Ma H, Chen X, Liu J, Shangguan Z, Yan W. 2022. Effects of warming and precipitation changes on soil GHG fluxes: a meta-analysis. Sci Total Environ. 827:154351. doi:10.1016/j.scitotenv.2022.154351.
  • Yang W, Feng G, Miles D, Gao L, Jia Y, Li C, Qu Z. 2020. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci Total Environ. 729:138752. doi:10.1016/j.scitotenv.2020.138752.
  • Zou T, Zhang X, Davidson EA. 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature. 611:81–87. doi:10.1038/s41586-022-05220-z.