390
Views
11
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

LncRNA NEAT1 regulated inflammation and apoptosis in a rat model of sepsis-induced acute kidney injury via MiR-27a-3p/TAB3 axis

, , , , &
Pages 2215-2227 | Received 13 Mar 2020, Accepted 28 Jun 2020, Published online: 22 Jul 2020

References

  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama. 2016 Feb 23;315(8):801–810. PubMed PMID: 26903338; PubMed Central PMCID: PMCPMC4968574. eng.
  • Gomez H, Kellum JA. Sepsis-induced acute kidney injury. Curr Opin Crit Care. 2016 Dec;22(6):546–553. PubMed PMID: 27661757; PubMed Central PMCID: PMCPMC5654474. eng.
  • Murugan R, Kellum JA. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol. 2011 Apr;7(4):209–217. PubMed PMID: 21343898; PubMed Central PMCID: PMCPMC3547642. eng.
  • Langenberg C, Wan L, Egi M, et al. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006 Jun;69(11):1996–2002. PubMed PMID: 16641923; eng.
  • Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol. 2015 Jan;35(1):64–74. PubMed PMID: 25795500; eng.
  • Shum HP, Yan WW, Chan TM. Recent knowledge on the pathophysiology of septic acute kidney injury: a narrative review. J Crit Care. 2016 Feb;31(1):82–89. PubMed PMID: 26475099; eng.
  • Jiang ZJ, Zhang MY, Fan ZW, et al. Influence of lncRNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. Eur Rev Med Pharmacol Sci. 2019 Apr;23(8):3512–3519. PubMed PMID: 31081107; eng.
  • Zhang CG, Yin DD, Sun SY, et al. The use of lncRNA analysis for stratification management of prognostic risk in patients with NSCLC. Eur Rev Med Pharmacol Sci. 2017 Jan;21(1):115–119. PubMed PMID: 28121347; eng.
  • Liu X, Hong C, Wu S, et al. Downregulation of lncRNA TUG1 contributes to the development of sepsis-associated acute kidney injury via regulating miR-142-3p/sirtuin 1 axis and modulating NF-κB pathway. J Cell Biochem. 2019. DOI:10.1002/jcb.28409. PubMed PMID: 30834562; eng.
  • Li S, Li J, Chen C, et al. Pan-cancer analysis of long non-coding RNA NEAT1 in various cancers. Genes Dis. 2018 Mar;5(1):27–35. PubMed PMID: 30258932; PubMed Central PMCID: PMCPMC6146416. eng.
  • Ma J, Zhao N, Du L, et al. Downregulation of lncRNA NEAT1 inhibits mouse mesangial cell proliferation, fibrosis, and inflammation but promotes apoptosis in diabetic nephropathy. Int J Clin Exp Pathol. 2019;12(4):1174–1183. PubMed PMID: 31933932; PubMed Central PMCID: PMCPMC6947069. eng.
  • Chen Y, Qiu J, Chen B, et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-kappaB pathway. Int Immunopharmacol. 2018 Jun;59:252–260. PubMed PMID: 29669307; eng.
  • Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 2016;1402:271–286. PubMed PMID: 26721498; eng.
  • Ge QM, Huang CM, Zhu XY, et al. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PloS One. 2017;12(3):e0173292. PubMed PMID: 28296904; PubMed Central PMCID: PMCPMC5351858. eng.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233. PubMed PMID: 19167326; PubMed Central PMCID: PMCPMC3794896. eng.
  • Colbert JF, Ford JA, Haeger SM, et al. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am J Physiol Renal Physiol. 2017;313(2):F553–F559. PubMed PMID: 28515178; eng.
  • Pan T, Jia P, Chen N, et al. Delayed remote ischemic preconditioning confers renoprotection against septic acute kidney injury via exosomal miR-21. Theranostics. 2019;9(2):405–423. PubMed PMID: 30809283; eng.
  • Zhang J, Wang CJ, Tang XM, et al. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: a Chinese population-based study. Eur Rev Med Pharmacol Sci. 2018;22(14):4604–4610. PubMed PMID: 30058697; eng.
  • Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury. PloS One. 2015;10(6):e0127175. PubMed PMID: 26079930; PubMed Central PMCID: PMCPMC4469584. eng.
  • Jiang X, Li D, Shen W, et al. LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial apoptosis through downregulating miR-27a-3p. J Cell Biochem. 2019 Sep;120(9):16273–16282. PubMed PMID: 31090110; eng.
  • Li W, Qiu X, Liu J, et al. miR-27a protects against acute lung injury in LPS-treated mice by inhibiting NF-kappaB-mediated inflammatory response. Int J Clin Exp Pathol. 2018;11(6):2980–2989. PubMed PMID: 31938423; PubMed Central PMCID: PMCPMC6958073. eng.
  • Yang Q, Zhang D, Li Y, et al. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-kappaB signaling pathway. Biomed Pharmacothe. 2018 Jan;97:1424–1433. PubMed PMID: 29156532; eng.
  • Min S, Li L, Zhang M, et al. TGF-beta-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38 MAPK, MAP2K4 and MAP2K7. Genes Immun. 2012 Dec;13(8):621–631. PubMed PMID: 23034448; eng.
  • Kahl CA, Marsh J, Fyffe J, et al. Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J Virol. 2004 Feb;78(3):1421–1430. PubMed PMID: 14722297; PubMed Central PMCID: PMCPMC321387. eng.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 May 1;29(9):e45. PubMed PMID: 11328886; PubMed Central PMCID: PMCPMC55695. eng.
  • Walker JM. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol. 1994;32:5–8. PubMed PMID: 7951748; eng.
  • Teo SH, Endre ZH. Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesth. 2017 Sep;31(3):331–344. PubMed PMID: 29248140; eng.
  • Chen X, Zhu W, Tan J, et al. Early outcome of early-goal directed therapy for patients with sepsis or septic shock: a systematic review and meta-analysis of randomized controlled trials. Oncotarget. 2017 Apr 18;8(16):27510–27519. PubMed PMID: 28460438; PubMed Central PMCID: PMCPMC5432353. eng.
  • Hsiao HT, Wu H, Huang PC, et al. The effect of propofol and sevoflurane on antioxidants and proinflammatory cytokines in a porcine ischemia-reperfusion model. Acta Anaesthesiologica Taiwanica. 2016 Mar;54(1):6–10. PubMed PMID: 26688227; eng.
  • Rangel-Frausto MS, Pittet D, Costigan M, et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. Jama. 1995 Jan 11;273(2):117–123. PubMed PMID: 7799491; eng.
  • Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 Jul;29(7):1303–1310. PubMed PMID: 11445675; eng.
  • Moeckel GW. Pathologic perspectives on acute tubular injury assessment in the kidney biopsy. Semin Nephrol. 2018 Jan;38(1):21–30. PubMed PMID: 29291758; eng.
  • Zeng C, Xu Y, Xu L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014 Sep 23;14:693. PubMed PMID: 25245097; PubMed Central PMCID: PMCPMC4180842. eng.
  • Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 2013 Mar;10(3):456–461. PubMed PMID: 23324609; PubMed Central PMCID: PMCPMC3672290. eng.
  • Nakagawa S, Hirose T. Paraspeckle nuclear bodies–useful uselessness? Cell Mol Life Sci. 2012 Sep;69(18):3027–3036. PubMed PMID: 22476590; PubMed Central PMCID: PMCPMC3428521. eng.
  • Choudhry H, Albukhari A, Morotti M, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2alpha dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene. 2015 Aug 20;34(34):4482–4490. PubMed PMID: 25417700; PubMed Central PMCID: PMCPMC4430310. eng.
  • Venkatachalam MA, Weinberg JM. The tubule pathology of septic acute kidney injury: a neglected area of research comes of age. Kidney Int. 2012 Feb;81(4):338–340. PubMed PMID: 22289794; PubMed Central PMCID: PMCPMC3395426. eng.
  • Naito M, Bomsztyk K, Zager RA. Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure. J Am Soc Nephrol. 2008 Jul;19(7):1321–1330. PubMed PMID: 18417719; PubMed Central PMCID: PMCPMC2440304. eng.
  • Wu L, Mayeux PR. Effects of the inducible nitric-oxide synthase inhibitor L-N(6)-(1-iminoethyl)-lysine on microcirculation and reactive nitrogen species generation in the kidney following lipopolysaccharide administration in mice. J Pharmacol Exp Ther. 2007 Mar;320(3):1061–1067. PubMed PMID: 17202403; eng.
  • Knotek M, Esson M, Gengaro P, et al. Desensitization of soluble guanylate cyclase in renal cortex during endotoxemia in mice. J Am Soc Nephrol. 2000 Nov;11(11):2133–2137. PubMed PMID: 11053491; eng.
  • Goode HF, Webster NR. Free radicals and antioxidants in sepsis. Crit Care Med. 1993 Nov;21(11):1770–1776. PubMed PMID: 8222696; eng.
  • Al Asmari AK, Al Sadoon KT, Obaid AA, et al. Protective effect of quinacrine against glycerol-induced acute kidney injury in rats. BMC Nephrol. 2017 Jan 28;18(1):41. PubMed PMID: 28129740; PubMed Central PMCID: PMCPMC5273840. eng.
  • Kockara A, Kayatas M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren Fail. 2013;35(2):291–294. PubMed PMID: 23181751; eng.
  • Shen J, Liu L, Zhang F, et al. LncRNA TapSAKI promotes inflammation injury in HK-2 cells and urine derived sepsis-induced kidney injury. J Pharm Pharmacol. 2019 May;71(5):839–848. PubMed PMID: 30666657; eng.
  • Cheng W, Li XW, Xiao YQ, et al. Non-coding RNA-associated ceRNA networks in a new contrast-induced acute kidney injury rat model. Mol Ther Nucleic Acids. 2019 Sep 6;17:102–112. PubMed PMID: 31234008; PubMed Central PMCID: PMCPMC6595412. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.