282
Views
19
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

MiR-9-5p inhibits mitochondrial damage and oxidative stress in AD cell models by targeting GSK-3β

, ORCID Icon, , , , & show all
Pages 2273-2280 | Received 08 May 2020, Accepted 14 Jul 2020, Published online: 25 Jul 2020

References

  • Winblad B, Amouyel P, Andrieu S, et al.Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532.
  • Angelucci F, Spalletta G, Iulio F, et al. Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) patients are characterized by increased BDNF serum levels. Alzheimers Dementia. 2009;7(1):15–20.
  • Grimm MOW, Hundsd?rfer B, Gr?sgen S, et al. PS dependent APP cleavage regulates glucosylceramide synthase and is affected in Alzheimer\”s disease. Cell Physiol Biochem. 2014;34(1):92–110.
  • Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–152.
  • Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185.
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer\”s disease. Nat Rev Neurosci. 2007;8(7):499–509.
  • Zhou Y, Liu L, Hao Y, et al. Detection of Aβ monomers and oligomers: early diagnosis of Alzheimer\”s disease. Chem Asian J. 2016;11(6):805–817.
  • Frautschy SA, Yang F, Calderón L, et al. Rodent models of Alzheimer’s disease: rat aβ infusion approaches to amyloid deposits. Neurobiol Aging. 1996;17(2):311–321.
  • Nazem A, Sankowski R, Bacher M, et al. Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation. . 2015;12:74.
  • Kukreja RC, Yin C, Salloum FN. MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol. 2011;80(4):558–564.
  • Liu Y, Zhang Y, Liu P, et al. MicroRNA-128 knockout inhibits the development of Alzheimer's disease by targeting PPARγ in mousemodels. Eur J Pharmacol. 2019;843:134–144.
  • Zhou Y, Wang ZF, Li W, et al. Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J Cell Biochem. 2018;119(7):5437-5448.
  • Wang J, Zhou T, Wang T, et al. Suppression of lncRNAATB prevents amyloid-β-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 axis. Biomed Pharmacother. 2018;108:707-715.
  • Duan Q, Si E. MicroRNA-25 aggravates Abeta1-42-induced hippocampal neuron injury in Alzheimer’s disease by downregulating KLF2 via the Nrf2 signaling pathway in a mouse model. J Cell Biochem. 2019 Sep;120(9):15891–15905.
  • Yuan J, Xiao G, Peng G, et al. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun. 2015;457(2):171–176. .
  • Yin H, He H, Shen X, et al. miR-9-5p inhibits skeletal muscle satellite cell proliferation and differentiation by targeting IGF2BP3 through the IGF2-PI3K/Akt signaling pathway. Int J Mol Sci. 2020 Feb 28;21(5):1655.
  • Zhu C, Wang K, Chen Z, et al. Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain. J Neuroinflammation. 2020;17(1):85.
  • Qiao H, Koya RC, Nakagawa K, et al. Inhibition of Alzheimer’s amyloid-β peptide-induced reduction of mitochondrial membrane potential and neurotoxicity by gelsolin. Neurobiol Aging. 2005;26(6):849–855. .
  • Li Y, Liu Q, Sun J, et al. Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells. Int J Mol Med. 2018;41(5):2997–3005.
  • Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta. 2018;1865(5):721–733.
  • Ballard C, Hanney ML, Theodoulou M, et al. The dementia antipsychotic withdrawal trial (DART-AD): long-term follow-up of a randomised placebo-controlled trial. Lancet Neurol. 2009;8(2):151–157. .
  • Basavaraju M, De Lencastre A. Alzheimer’s disease: presence and role of microRNAs. Biomol Concepts. 2016;7(4):241–252.
  • Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer’s disease revisited: implications for major neuropathologicalmechanisms. Rev Neurosci. 2018;29(2):161–182.
  • Roshan R, Ghosh T, Gadgil M, et al. Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar Ataxia 17. RNA Bio. 2012;9(6):891–899.
  • Wang X, Liu P, Zhu H, et al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer\”s disease, inhibits bcl2 translation. Brain Res Bull. 2009;80(4–5):0–273.
  • Kim J, Yoon H, Ramírez CM, et al. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. 2012;235(2):476–483.
  • Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.
  • Richardson JC, Cogswell JP, Ward J, et al. Iidentification of miRNA changes in Alzheime's disease brain and CSF yields putativebiomarkers and insights into disease pathways. J Alzheimers Dis. 2008;14(1):27–41.
  • Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6415–6420.
  • Wei YQ, Jiao XL, Zhang SY, et al. MiR-9-5p could promote angiogenesis and radiosensitivity in cervical cancer by targeting SOCS5. Eur Rev Med Pharmacol Sci. 2019 Sep;23(17):7314–7326. .
  • Li G, Wu F, Yang H, et al. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed Pharmacother. 2017;96:1170.
  • Fierro-Fernandez M, Busnadiego O, Sandoval P, et al. miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX 4 and TGFBR 2. EMBO Rep. 2015;16(10):1358–1377. .
  • Zhang Y, Huang N-Q, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res.2018;339:57-65.
  • Hanger DP, Hughes K, Woodgett JR, et al. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992 Nov 23;147(1):58–62.
  • Tolosa E, Litvan I, Hglinger GU, et al. A phase 2 trial of the GSK‐3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord Off J Mov Disord Soc. 2014;29(4):470–478. .
  • Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):75-88
  • Duan C, Li M, Rui L. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. J Biol Chem. 2004;279(42):43684–43691.
  • Lumetti S, Ferrillo S, Mazzotta S, et al. Pharmacological GSK-3β inhibition improves osteoblast differentiation on titanium surfaces. J Biol Regulators Homeostatic Agents. 2014;28(3):489–495.
  • Wei RJ, Zhang CH, Yang WZ. MiR-155 affects renal carcinoma cell proliferation, invasion and apoptosis through regulatingGSK-3β/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21(22):5034-5041
  • Xing HY, Cai YQ, Wang XF, et al. The cytoprotective effect of hyperoside against oxidative stress is mediated by the Nrf2-ARE signaling pathway through GSK-3β inactivation. PloS One. 2015;10(12):e0145183. .
  • Sajadimajd S, Khazaei M. Oxidative Stress and Cancer: The Role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538-557.
  • Vomhof-Dekrey EE, Picklo MJ. NAD(P)H: quinoneoxidoreductase 1 activity reduces hypertrophy in 3T3-L1 adipocytes. Free Radic Biol Med. 2012;53(4):690–700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.