1,570
Views
2
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Analysis of the differential expression profile of miRNAs in myocardial tissues of rats with burn injury

, , , , , & show all
Pages 2521-2528 | Received 12 Jun 2020, Accepted 02 Aug 2020, Published online: 31 Aug 2020

References

  • Clayton JL, Edkins R, Cairns BA, et al. Incidence and management of adverse events after the use of laser therapies for the treatment of hypertrophic burn scars. Ann Plast Surg. 2013;70(5):500–505.
  • Herndon DN, Hart DW, Wolf SE, et al. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–1229.
  • Guillory AN, Clayton RP, Herndon DN, et al. Cardiovascular dysfunction following burn injury: what we have learned from rat and mouse models. Int J Mol Sci. 2016;17(1):53.
  • Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363(9424):1895–1902.
  • Jiang SH, Lin CW, Wen F, et al. Role of E-selectin for diagnosis of myocardial injury in children of age up to 14 years. Int J Clin Exp Patho. 2015;8(9):11206–11211.
  • Cai W, Yang X, Han S, et al. Notch1 pathway protects against burn-induced myocardial injury by repressing reactive oxygen species production through JAK2/STAT3 signaling. Oxid Med Cell Longev. 2016;2016:5638943.
  • Thomsen H, Held H. Susceptibility of C5b-9(m) to postmortem changes. Int J Legal Med. 1994;106(6):291–293.
  • Huang D, Wang F, Wu W, et al. MicroRNA-429 inhibits cancer cell proliferation and migration by targeting the AKT1 in melanoma. Cancer Biomark. 2019;26(1):63–68.
  • He Q, Fang Y, Lu F, et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with lung cancer. J Clin Lab Anal. 2019;33(9):e23003.
  • Shukla SK, Sharma AK, Bharti R, et al. Can miRNAs serve as potential markers in thermal burn injury: an in silico approach. J Burn Care Res. 2020;41(1):57–64.
  • Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinf. 2015;13(1):17–24. .
  • Permenter MG, McDyre BC, Ippolito DL, et al. Alterations in tissue microRNA after heat stress in the conscious rat: potential biomarkers of organ-specific injury. BMC Genomics. 2019;20(1):141.
  • Zhou J, Zhang X, Liang P, et al. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol Open. 2016;5(3):211–219.
  • Koivisto L, Heino J, Häkkinen L, et al. Integrins in wound healing. Adv Wound Care. 2014;3(12):762–783.
  • Ge C, Liu J, Dong S. miRNA-214 protects sepsis-induced myocardial injury. Shock. 2018;50(1):112–118.
  • Hu Y, Jin G, Li B, et al. Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci. 2019;133(3):425–441.
  • White J, Maass DL, Giroir B, et al. Development of an acute burn model in adult mice for studies of cardiac function and cardiomyocyte cellular function. Shock. 2001;16(2):122–129.
  • Xie J, Zhang L, Fan X, et al. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-kappaB signaling pathway. Exp Ther Med. 2019;18(1):779–785.
  • Wang XW, Jin HY, Jiang SF, et al. MicroRNA-495 inhibits the high glucose-induced inflammation, differentiation and extracellular matrix accumulation of cardiac fibroblasts through downregulation of NOD1. Cell Mol Biol Lett. 2018;23:23.
  • Sk Sa S, Bharti R. Can miRNAs serve as potential markers in thermal burn injury: an in silico approach. J Burn Care Res. 2020;41(1):57–64.
  • Zhang D, Chang Y, Han S, et al. The microRNA expression profile in rat lung tissue early after burn injury. Ulus Travma Acil Cerrahi Derg. 2018;24(3):191–198.
  • Mao S, Luo X, Li Y, et al. Role of PI3K/AKT/mTOR pathway associated oxidative stress and cardiac dysfunction in takotsubo syndrome. Curr Neurovasc Res. 2020;17(1):35–43.
  • Gao YL, Kang L, Li CM, et al. Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol. 2016;16(2):130–137.
  • Pan S, Zhao XJ, Wang X, et al. Sfrpl attenuates TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway- mediated myocardial apoptosis in mice. Lipids Health Dis. 2018;17(1):202.
  • Moore SF, Hunter RW, Harper MT, et al. Dysfunction of the PI3 kinase/Rap1/integrin alpha(IIb)beta 3 pathway underlies ex vivo platelet hypoactivity in essential thrombocythemia. Blood. 2013;121(7):1209–1219.
  • Pan B, Xu ZW, Xu Y, et al. Diastolic dysfunction and cardiac troponin I decrease in aging hearts. Arch Biochem Biophys. 2016;603:20–28.
  • Smolenski RT, Forni M, Maccherini M, et al. Reduction of hyperacute rejection and protection of metabolism and function in hearts of human decay accelerating factor (hDAF)-expressing pigs. Cardiovasc Res. 2007;73(1):143–152.
  • Hung TM, Ho CM, Liu YC, et al. Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One. 2014;9(2):e89446.
  • Wang C, Qiao C. MicroRNA-190b confers radio-sensitivity through negative regulation of Bcl-2 in gastric cancer cells. Biotechnol Lett. 2017;39(4):485–490.
  • An NN, Shawn J, Peng JP, et al. Up-regulation of miR-190b promoted growth, invasion, migration and inhibited apoptosis of Wilms’ tumor cells by repressing the PTEN expression. Eur Rev Med Pharmaco. 2018;22(4):961–969.
  • Yu Y, Yang L, Han S, et al. MIR-190B alleviates cell autophagy and burn-induced skeletal muscle wasting via modulating PHLPP1/Akt/FoxO3A signaling pathway. Shock. 2019;52(5):513–521.
  • Redshaw N, Camps C, Sharma V, et al. TGF-beta/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos. Plos One. 2013;8(1):e55186.
  • Li HX, Shen L, Ma C, et al. Differential expression of miRNAs in the nervous system of a rat model of bilateral sciatic nerve chronic constriction injury. Int J Mol Med. 2013;32(1):219–226.
  • Kim J, Krichevsky A, Grad Y, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A. 2004;101(1):360–365.
  • Liu Q, He HJ, Zeng TB, et al. Neural-specific expression of miR-344-3p during mouse embryonic development. J Mol Histol. 2014;45(4):363–372.
  • Ling KH, Brautigan PJ, Hahn CN, et al. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. Bmc Genomics. 2011;12:176.
  • Qin LM, Chen YS, Niu YN, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. Bmc Genomics. 2010;11:320.
  • Chen H, Wang SQ, Chen LX, et al. MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3 beta of Wnt/beta-catenin signaling pathway. Febs Lett. 2014;588(3):429–435.
  • Lee ST, Chu K, Im WS, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011;227(1):172–179.
  • Leong JW, Abdullah S, Ling KH, et al. Spatiotemporal expression and molecular characterization of miR-344b and miR-344c in the developing mouse brain. Neural Plast. 2016;2016:1951250.
  • Bencsik P, Kiss K, Agg B, et al. Sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. Int J Mol Sci. 2019;20(4):991.