1,131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transcription factor 3 is dysregulated in megakaryocytes in myelofibrosis

, , , , , , , , , , , , & show all
Article: 2304173 | Received 15 Nov 2023, Accepted 02 Jan 2024, Published online: 01 Feb 2024

References

  • Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC. et al. The 5th edition of the World Health Organization classification of Haematolymphoid Tumours: myeloid and Histiocytic/Dendritic neoplasms. Leukemia. 2022;36(7):1703–10. doi:10.1038/s41375-022-01613-1. Epub 2022/06/22.
  • Spivak JL, Longo DL. Myeloproliferative neoplasms. N Engl J Med. 2017;376(22):2168–2181. doi:10.1056/NEJMra1406186.
  • Harrison CN, Vannucchi AM. Closing the gap: genetic landscape of MPN. Blood. 2016;127(3):276–278. doi:10.1182/blood-2015-10-674101.
  • Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006;355(23):2452–2466. doi: 10.1056/NEJMra063728. Epub 2006/12/08.
  • Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis–impact on disease phenotype. Eur J Haematol. 2007;79(6):508–515. doi: 10.1111/j.1600-0609.2007.00960.x. Epub 2007/10/27.
  • Skov V, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC, Larsen TS. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis. Exp Hematol. 2012;40:771–80.e719. doi:10.1016/j.exphem.2012.05.011.
  • Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Randi ML, Bertozzi I, Marino F, Vannucchi AM, Pieri L. et al. Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood. 2012;119(10):2239–2241. doi:10.1182/blood-2011-11-393819.
  • Campbell PJ, Bareford D, Erber WN, Wilkins BS, Wright P, Buck G, Wheatley K, Harrison CN, Green AR. Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol. 2009;27:2991–9. doi:10.1200/JCO.2008.20.3174.
  • Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W, Bruno E, Barosi G, Xu M, Hoffman R. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood. 2007;110(3):986–993. doi:10.1182/blood-2006-12-064626.
  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi:10.1182/blood-2016-03-643544.
  • Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, Fought AJ, Frankfurt O, Altman JK, Wen QJ. et al. Aurora kinase a inhibition provides clinical benefit, normalizes megakaryocytes, and reduces bone marrow fibrosis in patients with myelofibrosis: a phase I trial. Clin Cancer Res. 2019;25(16):4898–4906. doi:10.1158/1078-0432.CCR-19-1005.
  • Guo BB, Allcock RJ, Mirzai B, Malherbe JA, Choudry FA, Frontini M, Chuah H, Liang J, Kavanagh SE, Howman R. et al. Megakaryocytes in myeloproliferative neoplasms have unique somatic mutations. Am J Pathol. 2017;187(7):1512–1522. doi:10.1016/j.ajpath.2017.03.009.
  • Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, Breyfogle LJ, Schultz R, Gilles L, Koppikar P. et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21(12):1473–1480. doi:10.1038/nm.3995.
  • Alvarez-Larrán A, Arellano-Rodrigo E, Reverter JC, Domingo, A, Villamor N, Colomer D, Cervantes F. Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol. 2007;87:269–276. doi:10.1007/s00277-007-0386-3.
  • Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Seminars In Thrombosis And Hemostatis. 2014;40:348–58. doi:10.1055/s-0034-1370794. Epub 2014/03/13.
  • Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Haematology ASH Education Program 2012. 2012;2012:571–81. doi:10.1182/asheducation.V2012.1.571.3798557. Epub 2012/12/13.
  • Guo BB, Linden MD, Fuller KA, Phillips M, Mirzai B, Wilson L, Chuah H, Liang J, Howman R, Grove CS. et al. Platelets in myeloproliferative neoplasms have a distinct transcript signature in the presence of marrow fibrosis. Br J Haematol. 2020;188(2):272–282. doi:10.1111/bjh.16152.
  • Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, Rowley J, Gotlib J, Zehnder J, Krishnan A. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med. 2021;2(10):100425. doi: 10.1016/j.xcrm.2021.100425. Epub 2021/11/11.
  • Collinson R, Mazza-Parton A, Fuller K, Linden M, Erber W, Guo B. Gene expression of CXCL1 (GRO-α) and EGF by platelets in Myeloproliferative neoplasms. HemaSphere. 2020;4(6):4. doi:10.1097/HS9.0000000000000490.
  • Rodriguez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, Heck AJ, Vyas P, de Boer E, Grosveld F, Strouboulis J. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 2005;24(13):2354–2366. doi: 10.1038/sj.emboj.7600702. Epub 2005/05/28.
  • Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci USA. 2009;106:1930–5. doi:10.1073/pnas.0808866106. Epub 2009/02/03.
  • Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell. 2010;7(4):532–544. doi:10.1016/j.stem.2010.07.016. Epub 2010/10/05.
  • Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res. 2014;24(12):1945–1962. doi: 10.1101/gr.164830.113. Epub 2014/10/17.
  • Pimkin M, Kossenkov AV, Mishra T, Morrissey CS, Wu W, Keller CA, Blobel GA, Lee D, Beer MA, Hardison RC. et al. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res. 2014;24(12):1932–1944. doi:10.1101/gr.164178.113. Epub 2014/10/17.
  • Rubinstein J, Elagib K, Goldfarb A. Cyclic AMP signaling inhibits megakaryopoiesis by targeting an E2A-CDKN1A transcriptional axis. Blood. 2011;118(21):915–915. doi:10.1182/blood.V118.21.915.915.
  • Rubinstein JD, Elagib KE, Goldfarb AN. Cyclic AMP signaling inhibits megakaryocytic differentiation by targeting transcription factor 3 (E2A) cyclin-dependent kinase inhibitor 1A (CDKN1A) transcriptional axis. J Biol Chem. 2012;287(23):19207–19215. doi: 10.1074/jbc.M112.366476. Epub 2012/04/20.
  • Anguita E, Villegas A, Iborra F, Hernández A. GFI1B controls its own expression binding to multiple sites. Haematologica. 2010;95(1):36–46. doi: 10.3324/haematol.2009.012351. Epub 2009/09/22.
  • Xu W, Kee BL. Growth factor independent 1B (Gfi1b) is an E2A target gene that modulates Gata3 in T-cell lymphomas. Blood. 2007;109(10):4406–4414. doi: 10.1182/blood-2006-08-043331. Epub 2007/02/03.
  • Leonard J, Wolf JSJ, Degnin M, Eide CA, LaTocha D, Lenz K, Wilmot B, Mullighan CG, Loh M, Hunger SP. et al. Aurora a kinase as a target for therapy in TCF3-HLF rearranged acute lymphoblastic leukemia. Haematologica. 2021;106(11):2990–2994. doi:10.3324/haematol.2021.278692.
  • Moreira-Nunes CA, Mesquita FP, Portilho A, Mello Júnior FAR, Maués J, Pantoja L, Wanderley AV, Khayat AS, Zuercher WJ, Montenegro RC. et al. Targeting aurora kinases as a potential prognostic and therapeutical biomarkers in pediatric acute lymphoblastic leukaemia. Sci Rep. 2020;10(1):21272. doi:10.1038/s41598-020-78024-8.
  • Malherbe JA, Fuller KA, Arshad A, Nangalia J, Romeo G, Hall SL, Meehan KS, Guo B, Howman R, Erber WN. Megakaryocytic hyperplasia in myeloproliferative neoplasms is driven by disordered proliferative, apoptotic and epigenetic mechanisms. J Clin Pathol. 2016;69(2):155–163. doi: 10.1136/jclinpath-2015-203177. Epub 2015/08/21.
  • Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL. Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping. Am J Pathol. 2004;164(1):23–33. doi: 10.1016/S0002-9440(10)63092-1. Epub 2003/12/26.
  • Collinson RJ, Boey D, Wilson L, Yun Ng Z, Mirzai B, Chuah H, Leahy MF, Howman R, Linden M, Fuller K. et al. PlateletSeq: a novel method for discovery of blood-based biomarkers. Methods. 2023;219:139–149. doi:10.1016/j.ymeth.2023.10.003.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Krämer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–530. doi: 10.1093/bioinformatics/btt703. Epub 2013/12/18.
  • Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, Lakshmikanth T, Forsström B, Edfors F, Odeberg J. et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Sci. 2019;366(6472):eaax9198. doi:10.1126/science.aax9198.
  • Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010;14(4):533–537. doi:10.1089/gtmb.2010.0036.
  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–362. doi:10.1038/nmeth.2890.
  • Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9):915–925. doi:10.1038/nbt.2972. Epub 20140824.
  • Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription factor GFI1B in health and disease. Front Oncol. 2017;7:54–54. doi:10.3389/fonc.2017.00054.
  • Greenbaum S, Lazorchak AS, Zhuang Y. Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B Lymphocytes*. J Biol Chem. 2004;279(43):45028–45035. doi:10.1074/jbc.M400061200.
  • Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503. doi:10.1182/blood-2002-04-1133. Epub 2002/10/24.
  • Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci. 2015;72:1517–36. doi:10.1007/s00018-014-1813-y. Epub 2015/01/13.
  • Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, Godfrey AL, Papaemmanuil E, Gundem G, MacLean C. et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416–1430. doi:10.1056/NEJMoa1716614.
  • Hasselbalch HC, Skov V, Stauffer Larsen T, Thomassen M, Hasselbalch Riley C, Jensen MK, Bjerrum OW, Kruse TA, van Wijnen A. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation. PloS One. 2014;9(1):85567. doi:10.1371/journal.pone.0085567.
  • Skov V, Burton M, Thomassen M, Stauffer Larsen T, Riley CH, Brinch Madelung A, Kjær L, Bondo H, Stamp I, Ehinger M. et al. A 7-gene signature depicts the biochemical profile of early prefibrotic myelofibrosis. PloS One. 2016;11(8):e0161570. doi:10.1371/journal.pone.0161570. Epub 2016/09/01.
  • Koopmans SM, Schouten HC, van Marion AMW. Anti-apoptotic pathways in bone marrow and megakaryocytes in Myeloproliferative Neoplasia. Pathobiology. 2014;81:60–8. doi:10.1159/000356187.
  • Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z. et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38(28):5627–5642. doi:10.1038/s41388-019-0813-7.
  • Varadi M, Berrisford J, Deshpande M, Nair SS, Gutmanas A, Armstrong D, Pravda L, Al-Lazikani B, Anyango S, Barton GJ. Pdbe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Res. 2020;48(D1):D344–d353. doi:10.1093/nar/gkz853.
  • El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Hall-Ponselé E, Platonova O, Vyas P, Patient R, Porcher C, Mancini EJ. Structural basis for LMO2-driven recruitment of the SCL: E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Rep. 2013;4(1):135–147. doi: 10.1016/j.celrep.2013.06.008. Epub 2013/07/03.
  • Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, Rehm HL, MacArthur DG, O’Donnell-Luria A. Variant interpretation using population databases: lessons from gnomAD. Human Mutatation. 2022;43:1012–30. doi:10.1002/humu.24309. Epub 20211216.
  • Gui T, Liu M, Yao B, Jiang H, Yang D, Li Q, Zeng X, Wang Y, Cao J, Deng Y. et al. TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer. Cell Death Differ. 2021;28:3316–28. doi:10.1038/s41418-021-00824-w. Epub 2021/06/28.
  • de Azevedo ALK, Carvalho TM, Mara CS, Giner IS, de Oliveira JC, Gradia DF, Cavalli IJ, Ribeiro EMSF. Major regulators of the multi-step metastatic process are potential therapeutic targets for breast cancer management. Funct Integr Genomics. 2023;23:171. doi:10.1007/s10142-023-01097-x.
  • Lin B, Lee H, Yoon JG, Madan A, Wayner E, Tonning S, Hothi P, Schroeder B, Ulasov I, Foltz G. et al. Global analysis of H3K4me3 and H3K27me3 profiles in glioblastoma stem cells and identification of SLC17A7 as a bivalent tumor suppressor gene. Oncotarget. 2015;6(7):5369–5381. doi:10.18632/oncotarget.3030. Epub 2015/03/10.
  • Manoharan A, Roure CD, Rolink AG, Matthias P. De Novo DNA methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur J Immunol. 2015;45(8):2343–2355. doi:10.1002/eji.201445035.
  • Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, Blanco E, Pons José I, Matallanas D, Von Kriegsheim A. et al. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell. 2016;19:491–501. doi:10.1016/j.stem.2016.06.020.
  • Sangiorgio VFI, Nam A, Chen Z, Orazi A, Tam W. GATA1 downregulation in prefibrotic and fibrotic stages of primary myelofibrosis and in the myelofibrotic progression of other myeloproliferative neoplasms. Leuk Res. 2021;100:106495. doi:10.1016/j.leukres.2020.106495.
  • Ahluwalia M, Donovan H, Singh N, Butcher L, Erusalimsky JD. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction. J Thromb Haemostasis. 2010;8(10):2252–2261. doi: 10.1111/j.1538-7836.2010.03970.x. Epub 2010/07/01.
  • Centurione L, Di Baldassarre A, Zingariello M, Bosco D, Gatta V, Rana RA, Langella V, Di Virgilio A, Vannucchi AM, Migliaccio AR. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood. 2004;104:3573–80. doi:10.1182/blood-2004-01-0193. Epub 2004/08/05.
  • Gilles L, Arslan AD, Marinaccio C, Wen QJ, Arya P, McNulty M, Yang Q, Zhao JC, Konstantinoff K, Lasho T. et al. Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Invest. 2017;127(4):1316–1320. doi:10.1172/JCI82905.
  • Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379–391. doi:10.1016/j.cell.2005.06.015.
  • Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118:e101–111. doi:10.1182/blood-2011-03-339705. Epub 2011/05/21.
  • Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood. 2014;124(4):493–502. doi: 10.1182/blood-2014-04-512756. Epub 20140605.
  • Rondina MT, Weyrich AS. Regulation of the genetic code in megakaryocytes and platelets. J Thromb Haemostasis. 2015;13:S26–S32. doi:10.1111/jth.12965.
  • Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P. Megakaryocytes differentially sort mRnas for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood. 2011;118(7):1903–1911. doi: 10.1182/blood-2010-12-324517. Epub 2011/06/02.
  • Battinelli EM, Thon JN, Okazaki R, Peters CG, Vijey P, Wilkie AR, Noetzli LJ, Flaumenhaft R, Italiano JE Jr. Megakaryocytes package contents into separate α-granules that are differentially distributed in platelets. Blood Adv. 2019;3(20):3092–3098. doi:10.1182/bloodadvances.2018020834.
  • Clarke MC, Savill J, Jones DB, Noble BS, Brown SB. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol. 2003;160(4):577–587. doi:10.1083/jcb.200210111.
  • de Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 2002;100:1310–17. doi:10.1182/blood-2002-03-0686.
  • Vytrva N, Stacher E, Regitnig P, Zinke-Cerwenka W, Hojas S, Hubmann E, Porwit A, Bjorkholm M, Hoefler G, Beham-Schmid C. Megakaryocytic morphology and clinical parameters in essential thrombocythemia, polycythemia vera, and primary myelofibrosis with and without JAK2 V617F. Arch Pathol Lab Med. 2014;138:1203–9. doi:10.5858/arpa.2013-0018-OA.
  • Ghai S, Rai S. Megakaryocytic morphology in janus kinase 2 V617F positive myeloproliferative neoplasm. South Asian Journal Of Cancer. 2017;6:75–8. doi:10.4103/2278-330X.208854.
  • Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X. et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell. 2012;150(3):575–589. doi:10.1016/j.cell.2012.06.032.
  • Schmitt A, Jouault H, Guichard J, Wendling F, Drouin A, Cramer EM. Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood. 2000;96(4):1342–1347. doi: 10.1182/blood.V96.4.1342. Epub 2000/08/15.
  • Malherbe JAJ, Fuller KA, Mirzai B, Kavanagh S, So C-C, Ip H-W, Guo BB, Forsyth C, Howman R, Erber WN. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol. 2016;69(11):1017–1024. doi:10.1136/jclinpath-2016-203625.
  • Zingariello M, Martelli F, Ciaffoni F, Masiello F, Ghinassi B, D’Amore E, Massa M, Barosi G, Sancillo L, Li X. et al. Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood. 2013;121(17):3345–3363. doi:10.1182/blood-2012-06-439661. Epub 2013/03/05.
  • Sakurai K, Fujiwara T, Hasegawa S, Okitsu Y, Fukuhara N, Onishi Y, Yamada-Fujiwara M, Ichinohasama R, Harigae H. Inhibition of human primary megakaryocyte differentiation by anagrelide: a gene expression profiling analysis. Int J Hematol. 2016;104:190–9. doi:10.1007/s12185-016-2006-2. Epub 2016/04/17.
  • Tefferi A, Szuber N, Vallapureddy RR, Begna KH, Patnaik MM, Elliott MA, Christopher Hook C, Wolanskyj AP, Hanson CA, Ketterling RP. et al. Decreased survival and increased rate of fibrotic progression in essential thrombocythemia chronicled after the FDA approval date of anagrelide. Am J Hematol. 2019;94(1):5–9. doi:10.1002/ajh.25294.
  • Espasandin YR, Glembotsky AC, Grodzielski M, Lev PR, Goette NP, Molinas FC, Marta RF, Heller PG. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms. J Thromb Haemostasis. 2015;13(4):631–642. doi:10.1111/jth.12850.
  • Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood. 2002;99(3):888–897. doi:10.1182/blood.V99.3.888.
  • Schlinker AC, Duncan MT, DeLuca TA, Whitehead DC, Miller WM. Megakaryocyte polyploidization and proplatelet formation in low-attachment conditions. Biochem Eng J. 2016;111:24–33. doi:10.1016/j.bej.2016.03.001.
  • Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104(9):2722–2727. doi:10.1182/blood-2004-02-0769.