1,493
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in microfluidic technology of arterial thrombosis investigations

, , , , , , , , , & show all
Article: 2316743 | Received 27 Oct 2023, Accepted 05 Feb 2024, Published online: 23 Feb 2024

References

  • Costa PF, Albers HJ, Linssen JEA, Middelkamp HHT, van der Hout L, Passier R, van den Berg A, Malda J, van der Meer AD. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip. 2017;17(16):2785–20. doi:10.1039/C7LC00202E.
  • Jackson SP. Arterial thrombosis–insidious, unpredictable and deadly. Nat Med. 2011;17(11):1423–36. doi:10.1038/nm.2515.
  • Liu ZL, Ku DN, Aidun CK. Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: a multiscale in silico analysis. J Biomech. 2021;120:110349. doi:10.1016/j.jbiomech.2021.110349.
  • KAREL MFA, Lemmens TP, TUllemans BME, WIelders SJ, Gubbins E, van Beurden D, van Rijt S, Cosemans JM. Characterization of atherosclerotic plaque coating for thrombosis microfluidics assays. Cell Mol Bioeng. 2022;15(1):55–65. doi:10.1007/s12195-021-00713-9.
  • Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol Int. 2023;73(2):65–80. doi:10.1111/pin.13305.
  • Shahidi M. Thrombosis and von Willebrand factor. Adv Exp Med Biol. 2017;906:285–306.
  • Dopheide SM, Maxwell MJ, Jackson SP. Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood. 2002;99(1):159–67. doi:10.1182/blood.V99.1.159.
  • Maxwell MJ, Dopheide SM, Turner SJ, Jackson SP. Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol. 2006;26(3):663–9. doi:10.1161/01.ATV.0000201931.16535.e1.
  • Nesbitt WS, Tovar-lopez FJ, Westein E, Harper IS, Jackson SP. A multimode-TIRFM and microfluidic technique to examine platelet adhesion dynamics. Methods Mol Biol. 2013;1046:39–58.
  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 2007;109(2):566–76. doi:10.1182/blood-2006-07-028282.
  • Nesbitt WS, Kulkarni S, GIuliano S, GOncalves I, Dopheide SM, Yap CL, Harper IS, Salem HH, Jackson SP. Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem. 2002;277(4):2965–72. doi:10.1074/jbc.M110070200.
  • Umerah CO, Momodu II. Anticoagulation [M]. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  • Sondag D, Verhoeven S, Löwik D, van Geffen M, Veer CV, van Heerde WL, Boltje TJ, Rutjes FPJT. Activity sensing of coagulation and fibrinolytic proteases. Chemistry. 2023;29(18):e202203473. doi:10.1002/chem.202203473.
  • Griffin MT, Kim D, Ku DN. Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis. Biomicrofluidics. 2019;13(5):054106. doi:10.1063/1.5113508.
  • Tovar-lopez FJ, Rosengarten G, Nasabi M, Sivan V, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS. An investigation on platelet transport during thrombus formation at micro-scale stenosis. PloS One. 2013;8(10):e74123. doi:10.1371/journal.pone.0074123.
  • Colace TV, Tormoen GW, MCcarty OJ, Diamond SL. Microfluidics and coagulation biology. Annu Rev Biomed Eng. 2013;15(1):283–303. doi:10.1146/annurev-bioeng-071812-152406.
  • Karel M, Hechler B, Kuijpers M, Cosemans J. Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations. Platelets. 2020;31(4):439–46. doi:10.1080/09537104.2019.1708884.
  • Garg S, Heuck G, IP S, Ramsay E. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016;24(9):821–35. doi:10.1080/1061186X.2016.1198354.
  • Sarvepalli DP, Schmidtke DW, Nollert MU. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates. Ann Biomed Eng. 2009;37(7):1331–41. doi:10.1007/s10439-009-9708-z.
  • Ku CJ, D’Amico Oblak T, Spence DM. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug. Anal Chem. 2008;80(19):7543–8. doi:10.1021/ac801114j.
  • Kim D, Finkenstaedt-Quinn S, Hurley KR, Buchman JT, Haynes CL. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst (Lond). 2014;139(5):906–13. doi:10.1039/C3AN01679J.
  • Kotz F, Helmer D, Rapp BE. Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. Adv Biochem Eng Biotechnol. 2022;179:37–66.
  • Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, et al. Droplet-based microfluidics in biomedical applications. Biofabrication. 2022;14(2):022001. doi:10.1088/1758-5090/ac39a9.
  • Destefano P, BIanchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. Biomicrofluidics. 2022;16(3):031501. doi:10.1063/5.0087294.
  • Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of microfluidics and organ-on-a-chip in cancer research. Biosensors (Basel). 2022;12(7):459. doi:10.3390/bios12070459.
  • Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca R-C, Jinga V. Applications of polymers for organ-on-chip technology in urology. Polym (Basel). 2022;14(9):1688. doi:10.3390/polym14091668.
  • Chliara MA, Elezoglou S, Zergioti I. Bioprinting on organ-on-chip: development and applications. Biosensors (Basel). 2022;12(12):1135. doi:10.3390/bios12121135.
  • Safhi AY. Three-dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives. Pharmaceuticals (Basel). 2022;15(6):678. doi:10.3390/ph15060678.
  • Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110(4):2081–173. doi:10.1021/cr900201r.
  • Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S. Two-Dimensional MoS(2): Structural properties, synthesis methods, and regulation strategies toward oxygen reduction. Micromachines. 2021;12(3):240. doi:10.3390/mi12030240.
  • Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development [J]. Anal Methods. 2022;14(30):2885–906. doi:10.1039/D2AY00798C.
  • Lee H, Fang NX. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics. J Vis Exp. 2012;69:e4457. doi:10.3791/4457.
  • Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem. 2017;89(7):3858–66. doi:10.1021/acs.analchem.7b00136.
  • Cordeiro AS, Tekko IA, Jomaa MH, Vora L, McAlister E, Volpe-Zanutto F, Nethery M, Baine PT, Mitchell N, McNeill DW. et al. Two-Photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm Res. 2020;37(9):174. doi:10.1007/s11095-020-02887-9.
  • Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:40)103–12. doi:10.1016/j.copbio.2016.03.014.
  • Au AK, Huynh W, Horowitz LF, Folch A. 3D-printed microfluidics. Angew Chem Int Ed Engl. 2016;55(12):3862–81. doi:10.1002/anie.201504382.
  • HE Y, Vallières C, Alexander MR, Wildman R, Avery S. Inkjet 3D printing of polymers resistant to fungal attachment. Bio Protoc. 2021;11(9):e4016. doi:10.21769/BioProtoc.4016.
  • Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–7. doi:10.1016/j.ijpharm.2018.02.015.
  • Nahak BK, MIshra A, Preetam S, Tiwari A. Advances in organ-on-a-chip materials and devices. ACS Appl Bio Mater. 2022;5(8):3576–607. doi:10.1021/acsabm.2c00041.
  • Jalili A, Bagheri M, Shamloo A, Kazemipour Ashkezari AH. A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR. Sci Rep. 2021;11(1):23338. doi:10.1038/s41598-021-02535-1.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9. doi:10.1038/nature13118.
  • Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnol. 2023;21(1):85. doi:10.1186/s12951-023-01846-x.
  • Qian JY, Hou CW, Li XJ, Jin Z-J. Actuation mechanism of microvalves: a review. Micromachines. 2020;11(2):172. doi:10.3390/mi11020172.
  • Araci IE, Quake SR. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip. 2012;12(16):2803–6. doi:10.1039/c2lc40258k.
  • Lai X, Yang M, Wu H, Li D. Modular microfluidics: current status and future prospects. Micromachines. 2022;13(8):1363. doi:10.3390/mi13081363.
  • Oyama TG, Oyama K, Taguchi M. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips. Lab Chip. 2020;20(13):2354–63. doi:10.1039/D0LC00316F.
  • Nesbitt WS, Westein E, Tovar-lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15(6):665–73. doi:10.1038/nm.1955.
  • Ruggeri ZM. Platelet adhesion under flow. Microcirculation (New York, NY: 1994). 2009;16(1):58–83. doi:10.1080/10739680802651477.
  • Tokarev AA, Butylin AA, Ataullakhanov FI. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J. 2011;100(4):799–808. doi:10.1016/j.bpj.2010.12.3740.
  • Cranmer SL, Ashworth KJ, Yao Y, Berndt MC, Ruggeri ZM, Andrews RK, Jackson SP. High shear–dependent loss of membrane integrity and defective platelet adhesion following disruption of the GPIbα-filamin interaction. Blood. 2011;117(9):2718–27. doi:10.1182/blood-2010-07-296194.
  • Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109(12):5087–95. doi:10.1182/blood-2006-12-027698.
  • Casa LD, Deaton DH, Ku DN. Role of high shear rate in thrombosis. J Vas Sur. 2015;61(4):1068–80. doi:10.1016/j.jvs.2014.12.050.
  • Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Cir Remodel cannot bes. 2007;100(12):1673–85. doi:10.1161/01.RES.0000267878.97021.ab.
  • Li M, Ku DN, Forest CR. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip. 2012;12(7):1355–62. doi:10.1039/c2lc21145a.
  • Rahman SM, Hlady V. Downstream platelet adhesion and activation under highly elevated upstream shear forces. Acta Biomater. 2019;91:135–43. doi:10.1016/j.actbio.2019.04.028.
  • Gracka M, Lima R, Miranda JM, Student S, Melka B, Ostrowski Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: a CFD model validation. Comp Met Prog Biomed. 2022;226:107117. doi:10.1016/j.cmpb.2022.107117.
  • Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip. 2010;10(3):291–302. doi:10.1039/B916757A.
  • Rahman SM, Eichinger CD, Hlady V. Effects of upstream shear forces on priming of platelets for downstream adhesion and activation. Acta Biomater. 2018;73:228–35. doi:10.1016/j.actbio.2018.04.002.
  • Zhussupbekov M, Méndez rojano R, Wu WT, Massoudi M, Antaki JF. A continuum model for the unfolding of von Willebrand factor. Ann Biomed Eng. 2021;49(9):2646–58. doi:10.1007/s10439-021-02845-5.
  • Zhang T, Liu L, Huang X, Gao X, Chen D, Huan X, He C, Li Y. Application of microfluidic chip technology to study the inhibitory effect of tetramethylpyrazine on platelet aggregation, activation, and phosphatidylserine exposure mediated by pathological high shear rate. Blood Coagul Fib. 2023;34(1):47–60. doi:10.1097/MBC.0000000000001179.
  • Muravlev IA, Dobrovolsky AB, Antonova OA, Khaspekova SG, Mazurov AV. Effects of platelets activated by different agonists on fibrin formation and thrombin generation. Platelets. 2023;34(1):2139365. doi:10.1080/09537104.2022.2139365.
  • Qi QM, Dunne E, Oglesby I, Schoen I, Ricco AJ, Kenny D, Shaqfeh ESG. In vitro measurement and modeling of platelet adhesion on VWF-Coated surfaces in channel flow. Biophy J. 2019;116(6):1136–51. doi:10.1016/j.bpj.2019.01.040.
  • De witt SM, Swieringa F, Cavill R, Lamers MME, van Kruchten R, Mastenbroek T, Baaten C, Coort S, Pugh N, Schulz A, et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun. 2014;5(1):4257. doi:10.1038/ncomms5257.
  • Jeon HJ, Qureshi MM, LEE SY, Badadhe JD, Cho H, Chung E. Laser speckle decorrelation time-based platelet function testing in microfluidic system. Sci Rep. 2019;9(1):16514. doi:10.1038/s41598-019-52953-5.
  • Luna DJ, Pandian RNK, Mathur T, Bui J, Gadangi P, Kostousov V, Hui SKR, Teruya J, Jain A. Tortuosity-powered microfluidic device for assessment of thrombosis and antithrombotic therapy in whole blood. Sci Rep. 2020;10(1):5742. doi:10.1038/s41598-020-62768-4.
  • Ting LH, Feghhi S, Taparia N, Smith AO, Karchin A, Lim E, John AS, Wang X, Rue T, White NJ. et al. Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk. Nat Commun. 2019;10(1):1204. doi:10.1038/s41467-019-09150-9.
  • Lee H, Na W, Lee BK, Lim CS, Shin S. Recent advances in microfluidic platelet function assays: moving microfluidics into clinical applications. Clin Hemorheol Microcirc. 2019;71(2):249–66. doi:10.3233/CH-189416.
  • Chen Z, Lu J, Zhang C, Hsia I, Yu X, Marecki L, Marecki E, Asmani M, Jain S, Neelamegham S. et al. Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat Commun. 2019;10(1):2051. doi:10.1038/s41467-019-10067-6.
  • Li R, Panckeri KA, Fogarty PF, Cuker A, Diamond SL. Recombinant factor VIIa addition to haemophilic blood perfused over collagen/tissue factor can sufficiently bypass the factor IXa/VIIIa defect to rescue fibrin generation. Hae J Off World Fed Hemo. 2017;23(5):759–68. 10.1111/hae.13259.
  • Kornblith LZ, Kutcher ME, Redick BJ, Calfee CS, Vilardi RF, Cohen MJ. Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma Acute Care Sur. 2014;76(2). discussion 62-3. doi:10.1097/TA.0000000000000108.
  • Govindarajan V, Zhu S, LI R, Lu Y, Diamond SL, Reifman J, Mitrophanov AY. Impact of tissue factor localization on blood clot structure and resistance under venous shear. Biophy J. 2018;114(4):978–91. doi:10.1016/j.bpj.2017.12.034.
  • Judith RM, Fisher JK, Spero RC, Fiser BL, Turner A, Oberhardt B, Taylor RM, Falvo MR, Superfine R. Micro-elastometry on whole blood clots using actuated surface-attached posts (ASAPs). Lab Chip. 2015;15(5):1385–93. doi:10.1039/C4LC01478B.
  • Li R, Diamond SL. Detection of platelet sensitivity to inhibitors of COX-1, P2Y₁, and P2Y₁₂ using a whole blood microfluidic flow assay. Thromb Res. 2014;133(2):203–10. doi:10.1016/j.thromres.2013.10.043.
  • Castrichini M, Luzum JA, Pereira N. Pharmacogenetics of antiplatelet therapy. Annu Rev Pharmacol Toxicol. 2023;63:211–29. doi:10.1146/annurev-pharmtox-051921-092701.
  • Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9(2):154–69. doi:10.1038/nrd2957.
  • Marcucci R, Berteotti M, Gragnano F, Galli M, Cavallari I, Renda G, Capranzano P, Santilli F, Capodanno D, Angiolillo DJ, et al. Monitoring antiplatelet therapy: where are we now? J Cardiovasc Med (Hagerstown). 2023;24(Suppl 1):24–35. doi:10.2459/JCM.0000000000001406.
  • Angiolillo DJ, Rollini F, Storey RF, Bhatt DL, James S, Schneider DJ, Sibbing D, So DYF, Trenk D, Alexopoulos D, et al. International expert consensus on switching platelet P2Y12Receptor–inhibiting therapies. Circulation. 2017;136(20):1955–75. doi:10.1161/CIRCULATIONAHA.117.031164.
  • Pîrlog BO, Grotta JC. The applicability of thromboelastography in acute ischemic stroke: a literature review. Semin Thromb Hemost. 2022;48(7):842–9. doi:10.1055/s-0042-1753529.
  • Sharifi-rad J, Sharopov F, Ezzat SM, Zam W, Ademiluyi AO, Oyeniran OH, Adetunji CO, Roli OI, Živković J, Martorell M, et al. An updated review on glycoprotein IIb/IIIa inhibitors as antiplatelet agents: basic and clinical perspectives. High Blood Press Cardiovasc Prev. 2023;30(2):93–107. doi:10.1007/s40292-023-00562-9.
  • Francis LRA, MIllington-burgess SL, Rahman T, Harper MT. Q94 is not a selective modulator of proteinase-activated receptor 1 (PAR1) in platelets. Platelets. 2022;33(7):1090–5. doi:10.1080/09537104.2022.2026911.
  • Xiao T, Ren S, Bao J, Gao D, Sun R, Gu X, Gao J, Chen S, Jin J, Wei L, et al. Vorapaxar proven to be a promising candidate for pulmonary fibrosis by intervening in the PAR1/JAK2/STAT1/3 signaling pathway-an experimental in vitro and vivo study. Eur J Pharmacol. 2023;943:175438. doi:10.1016/j.ejphar.2022.175438.
  • Yin Q, Zhang X, Liao S, Huang X, Wan CC, Wang Y. Potential anticoagulant of traditional Chinese medicine and novel targets for anticoagulant drugs. Phytomedicine. 2023;116:154880. doi:10.1016/j.phymed.2023.154880.
  • Heidbuchel H, Verhamme P, Alings M, Antz M, Diener H-C, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P, et al. updated European heart rhythm association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507. doi:10.1093/europace/euv309.
  • Sawetaji S, Aggarwal KK. A non-competitive serpin-like thrombin inhibitor isolated from moringa oleifera exhibit a high affinity for thrombin. Protein J. 2023;42(4):305–15. doi:10.1007/s10930-023-10116-6.
  • Cohen O, Ageno W. Coming soon to a pharmacy near you? FXI and FXII inhibitors to prevent or treat thromboembolism. Hematology Am Soc Hematol Educ Program. 2022;2022(1):495–505. doi:10.1182/hematology.2022000386.
  • Fredenburgh JC, Weitz JI. New anticoagulants: moving beyond the direct oral anticoagulants. J Thrombosis Haemostasis. 2021;19(1):20–9. doi:10.1111/jth.15126.
  • Zia MA. Streptokinase: An Efficient Enzyme in Cardiac Medicine. Ppl. 2020;27(2):111–19. doi:10.2174/0929866526666191014150408.
  • Shen M, Wang Y, Hu F, Lv L, Chen K, Xing G. Thrombolytic agents: nanocarriers in targeted release. Molecules. 2021;26(22):6776. doi:10.3390/molecules26226776.
  • Bhatt DL, Lopes RD, Harrington RA. Diagnosis and treatment of acute coronary syndromes: a review. JAMA. 2022;327(7):662–75. doi:10.1001/jama.2022.0358.
  • Mohammadi E, Mahnam K, Jahanian-najafabadi A, Sadeghi HMM. Design and production of new chimeric reteplase with enhanced fibrin affinity: a theoretical and experimental study. J Biomol Struct Dyn. 2021;39(4):1321–33. doi:10.1080/07391102.2020.1729865.
  • Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. Biomicrofluidics. 2019;13(6):061503. doi:10.1063/1.5121200.
  • Wu H, Shi S, Liu Y, Zhang Q, Lam RHW, Lim CT, Hu J. Recent progress of organ-on-a-chip towards cardiovascular diseases: advanced design, fabrication, and applications. Biofabrication. 2023;15(4). doi:10.1088/1758-5090/acdaf9.
  • Harris LF, Rainey P, Castro-López V, O’Donnell JS, Killard AJ. A microfluidic anti-factor xa assay device for point of care monitoring of anticoagulation therapy. Analyst (Lond). 2013;138(17):4769–76. doi:10.1039/c3an00401e.
  • Loyau S, Ho-Tin-Noé B, Bourrienne MC, Boulaftali Y, Jandrot-Perrus M. Microfluidic modeling of thrombolysis. ATVB. 2018;38(11):2626–37. doi:10.1161/ATVBAHA.118.311178.
  • Meador S, Dyke S, Togami J, Kuskov B, Burnett AE. Antithrombosis stewardship efforts to de-escalate inappropriate combined therapy in outpatient clinics. J Thromb Thrombolysis. 2022;53(2):436–45. doi:10.1007/s11239-021-02551-y.
  • Zhang ZX, Schroeder-Tanka J, Stooker W, Wissen S, Khorsand N. Management of combined oral antithrombotic therapy by an antithrombotic stewardship program: a prospective study. Br J Clin Pharmacol. 2022;88(9):4092–9. doi:10.1111/bcp.15346.
  • Trevisan BM, Porada CD, Atala A, Almeida-Porada G. Microfluidic devices for studying coagulation biology. Sem Cell Develop Bio. 2021;112:1–7. doi:10.1016/j.semcdb.2020.06.002.
  • Yu X, Panckeri KA, Ivanciu L, Camire RM, Coxon CH, Cuker A, Diamond SL. Microfluidic hemophilia models using blood from healthy donors. Res Pract Thromb Haemost. 2020;4(1):54–63. doi:10.1002/rth2.12286.
  • Astermark J, Donfield SM, Dimichele DM, Gringeri A, Gilbert SA, Waters J, Berntorp E. A randomized comparison of bypassing agents in hemophilia complicated by an inhibitor: the FEIBA NovoSeven comparative (FENOC) study. Blood. 2007;109(2):546–51. doi:10.1182/blood-2006-04-017988.
  • Li R, Fries S, Li X, Grosser T, Diamond SL. Microfluidic assay of platelet deposition on collagen by perfusion of whole blood from healthy individuals taking aspirin. Clin Chem. 2013;59(8):1195–204. doi:10.1373/clinchem.2012.198101.
  • Rahman SM, Hlady V. Microfluidic assay of antiplatelet agents for inhibition of shear-induced platelet adhesion and activation. Lab Chip. 2021;21(1):174–83. doi:10.1039/D0LC00756K.
  • Jahn K, Suchodolski K, Schäfer A, Sahlmann B, Küster U, Echtermeyer F, Calmer S, Theilmeier G, Johanning K. Effect of clopidogrel on thrombus formation in an ex vivo parallel plate flow chamber model cannot be reversed by addition of platelet concentrates or vWF concentrate. Anesth Analg. 2017;124(4):1091–8. doi:10.1213/ANE.0000000000001903.
  • Herfs L, Swieringa F, Jooss N, Kozlowski M, Heubel-Moenen FCJ, van Oerle R, Machiels P, Henskens Y, Heemskerk JWM. Multiparameter microfluidics assay of thrombus formation reveals increased sensitivity to contraction and antiplatelet agents at physiological temperature. Thromb Res. 2021;203:46–56. doi:10.1016/j.thromres.2021.04.014.
  • Onasoga-jarvis AA, Leiderman K, Fogelson AL, Wang M, Manco-Johnson MJ, Di Paola JA, Neeves KB. The effect of factor VIII deficiencies and replacement and bypass therapies on thrombus formation under venous flow conditions in microfluidic and computational models. PloS One. 2013;8(11):e78732. doi:10.1371/journal.pone.0078732.
  • Colace TV, Fogarty PF, Panckeri KA, Li R, Diamond SL. Microfluidic assay of hemophilic blood clotting: distinct deficits in platelet and fibrin deposition at low factor levels. J Thromb Haemost. 2014;12(2):147–58. doi:10.1111/jth.12457.