2,087
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Crayfish shells-derived carbon dots as a fluorescence sensor for the selective detection of 4-nitrophenol

, , , , , , , & show all
Pages 36-47 | Received 15 Sep 2022, Accepted 14 Oct 2022, Published online: 16 Apr 2023

References

  • Ding, Y., Tan, W., Zheng, X., Ji, X., Song, P., Bao, L., Zhang, C., Shang, J., Qin, K., & Wei, Y. (2021). Serratia marcescens-derived fluorescent carbon dots as a platform toward multi-mode bioimaging and detection of p-nitrophenol. The Analyst, 146(2), 683–690. https://doi.org/10.1039/d0an01624a
  • Faraji, M., Noormohammadi, F., & Adeli, M. (2020). Preparation of a ternary deep eutectic solvent as extraction solvent for dispersive liquid-liquid microextraction of nitrophenols in water samples. Journal of Environmental Chemical Engineering, 8(4), 103948. https://doi.org/10.1016/j.jece.2020.103948
  • Fischer, J., Barek, J., & Wang, J. (2006). Separation and detection of nitrophenols at capillary electrophoresis microchips with amperometric detection. Electroanalysis, 18(2), 195–199. https://doi.org/10.1002/elan.200503393
  • Gothwal, R., & Shashidhar, T. (2014). Antibiotic pollution in the environment: A review. Clean-Soil, Air, Water, 42(9999), 1–11. https://doi.org/10.1002/clen.201300989
  • Gu, L., Zhang, J., Yang, G., Tang, Y., Zhang, X., Huang, X., Zhai, W., Fodjo, E. K., & Kong, C. (2021). Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe(3+) and l-ascorbic acid. Food Chemistry, 376, 131898. https://doi.org/10.1016/j.foodchem.2021.131898
  • Han, L., Liu, S. G., Liang, J. Y., Ju, Y. J., Li, N. B., & Luo, H. Q. (2019). pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. Journal of Hazardous Materials, 362, 45–52. https://doi.org/10.1016/j.jhazmat.2018.09.025
  • He, Y., Sun, J., Feng, D., Chen, H., Gao, F., & Wang, L. (2015). Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosensors and Bioelectronics, 74, 418–422. https://doi.org/10.1016/j.bios.2015.07.006
  • Hu, J., Sun, Y., Aryee, A. A., Qu, L., Zhang, K., & Li, Z. (2022). Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: A review. Analytica Chimica Acta, 1209, 338885. https://doi.org/10.1016/j.aca.2021.338885
  • Hu, Y., & Gao, Z. (2020). Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-nitrophenol. Journal of Hazardous Materials, 382, 121048. https://doi.org/10.1016/j.jhazmat.2019.121048
  • Kaur, M., Mehta, S. K., & Kansal, S. K. (2017). Nitrogen doped graphene quantum dots: Efficient fluorescent chemosensor for the selective and sensitive detection of 2,4,6-trinitrophenol. Sensors and Actuators B: Chemical, 245, 938–945. https://doi.org/10.1016/j.snb.2017.02.026
  • Krishnaiah, P., Atchudan, R., Perumal, S., Salama, E. S., Lee, Y. R., & Jeon, B. H. (2022). Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn(2+) and Fe(3). Chemosphere, 286(Pt 2), 131764. https://doi.org/10.1016/j.chemosphere.2021.131764
  • Li, Y., Yin, S., Yang, Y., Chen, J., Wu, L., & Sun, C. (2020). Sample treatment methods for the determination of phenolic environmental estrogens in foods and drinking water. Journal of AOAC International, 103(2), 348–364. https://doi.org/10.5740/jaoacint.19-0249
  • Liang, C., Xie, X., Zhang, D., Feng, J., Lu, S., & Shi, Q. (2021). Biomass carbon dots derived from Wedelia trilobata for the direct detection of glutathione and their imaging application in living cells. Journal of Materials Chemistry B, 9(28), 5670–5681. https://doi.org/10.1039/d0tb02979c
  • Liu, H., Ding, J., Zhang, K., & Ding, L. (2019). Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC Trends in Analytical Chemistry, 118, 315–337. https://doi.org/10.1016/j.trac.2019.05.051
  • Patel, B. R., Noroozifar, M., & Kerman, K. (2020). Review—nanocomposite-based sensors for voltammetric detection of hazardous phenolic pollutants in water. Journal of The Electrochemical Society, 167(3), 037568. https://doi.org/10.1149/1945-7111/ab71fa
  • Qi, H., Teng, M., Liu, M., Liu, S., Li, J., Yu, H., Teng, C., Huang, Z., Liu, H., Shao, Q., Umar, A., Ding, T., Gao, Q., & Guo, Z. (2019). Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe(3+) ions and tetracyclines. Journal of Colloid and Interface Science, 539, 332–341. https://doi.org/10.1016/j.jcis.2018.12.047
  • Singh, S., Nigam, P., Pednekar, A., Mukherjee, S., & Mishra, A. (2020). Carbon quantum dots functionalized agarose gel matrix for in solution detection of nonylphenol. Environmental Technology, 41(3), 322–328. https://doi.org/10.1080/09593330.2018.1498133
  • Sun, X., Wang, C., Li, P., Shao, Z., Xia, J., Liu, Q., Shen, F., & Fang, Y. (2022). The facile synthesis of nitrogen and sulfur co-doped carbon dots for developing a powerful “on-off-on” fluorescence probe to detect glutathione in vegetables. Food Chemistry, 372, 131142. https://doi.org/10.1016/j.foodchem.2021.131142
  • Tan, Y., Peng, B., Wu, Y., Xiong, L., Sun, J., Peng, G., & Bai, X. (2021). Human health risk assessment of toxic heavy metal and metalloid intake via consumption of red swamp crayfish (Procambarus clarkii) from rice-crayfish co-culture fields in China. Food Control, 128, 108181. https://doi.org/10.1016/j.foodcont.2021.108181
  • Wan, Y., Wang, M., Zhang, K., Fu, Q., Gao, M., Wang, L., Xia, Z., & Gao, D. (2019). Facile and green synthesis of fluorescent carbon dots from the flowers of Abelmoschus manihot (Linn.) Medicus for sensitive detection of 2,4,6-trinitrophenol and cellular imaging. Microchemical Journal, 148, 385–396. https://doi.org/10.1016/j.microc.2019.05.026
  • Wang, C., Shi, G., Que, F., Xia, Y., Li, X., Yang, H., Shi, L., Wu, W., Ding, A., Li, X., Qiao, Y., Liao, L., Kang, J., Wang, L., Wang, L., & Xiong, G. (2022). Effect of microstructure and chemical proximate composition on mechanical properties of Procambarus clarkii shell. Lwt, 165. https://doi.org/10.1016/j.lwt.2022.113731
  • Wang, J., Teng, X., Wang, Y., Si, S., Ju, J., Pan, W., Wang, J., Sun, X., & Wang, W. (2021). Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC Trends in Analytical Chemistry, 144, 116430. https://doi.org/10.1016/j.trac.2021.116430
  • Wang, M., Gao, M., Deng, L., Kang, X., Zhang, K., Fu, Q., Xia, Z., & Gao, D. (2020a). A sensitive and selective fluorescent sensor for 2,4,6-trinitrophenol detection based on the composite material of magnetic covalent organic frameworks, molecularly imprinted polymers and carbon dots. Microchemical Journal, 154. https://doi.org/10.1016/j.microc.2019.104590
  • Wang, M., Shi, R., Gao, M., Zhang, K., Deng, L., Fu, Q., Wang, L., & Gao, D. (2020b). Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA. Food Chemistry, 318, 126506. https://doi.org/10.1016/j.foodchem.2020.126506
  • Xia, H., Zhang, W., Yang, Z., Dai, Z., & Yang, Y. (2021). Spectrophotometric determination of p-nitrophenol under ENP interference. Journal of Analytical Methods in Chemistry, 2021, 6682722. https://doi.org/10.1155/2021/6682722
  • Xu, Y., Huang, T., Meng, M., & Yan, Y. (2021). Fluorescent polydopamine based molecularly imprinted sensor for ultrafast and selective detection of p-nitrophenol in drinking water. Microchimica Acta, 189(1), 25. https://doi.org/10.1007/s00604-021-05106-3
  • Yang, X., Wang, D., Luo, N., Feng, M., Peng, X., & Liao, X. (2020). Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118462. https://doi.org/10.1016/j.saa.2020.118462
  • Yin, C., Cai, J., Gao, L., Yin, J., & Zhou, J. (2016). Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method. Journal of Hazardous Materials, 305, 15–20. https://doi.org/10.1016/j.jhazmat.2015.11.028
  • Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University - Science, 34(1), 101653. https://doi.org/10.1016/j.jksus.2021.101653
  • Zhang, C., Govindaraju, S., Giribabu, K., Huh, Y. S., & Yun, K. (2017). AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sensors and Actuators B: Chemical, 252, 616–623. https://doi.org/10.1016/j.snb.2017.06.039
  • Zhu, W., Zhou, Y., Liu, S., Luo, M., Du, J., Fan, J., Xiong, H., & Peng, H. (2021). A novel magnetic fluorescent molecularly imprinted sensor for highly selective and sensitive detection of 4-nitrophenol in food samples through a dual-recognition mechanism. Food Chemistry, 348, 129126. https://doi.org/10.1016/j.foodchem.2021.129126
  • Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchimica Acta, 184(7), 1899–1914. https://doi.org/10.1007/s00604-017-2318-9