1,113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous detection of OTA and AFB1 in cereals based on bispecific monoclonal antibody using quantum dot nanobead lateral flow immunoassay

, , , , , & show all
Pages 48-66 | Received 16 Dec 2022, Accepted 20 Apr 2023, Published online: 09 May 2023

References

  • Ademola, O., Saha Turna, N., Liverpool-Tasie, L. S. O., Obadina, A., & Wu, F. (2021). Mycotoxin reduction through lactic acid fermentation: Evidence from commercial ogi processors in southwest Nigeria. Food Control, 121, Article 107620. https://doi.org/10.1016/j.foodcont.2020.107620
  • Bu, T., Zhang, M., Sun, X., Tian, Y., Bai, F., Jia, P., Bai, Y., Zhe, T., & Wang, L. (2019). Gold nanoparticles-functionalized microorganisms assisted construction of immunobiosensor for sensitive detection of ochratoxin A in food samples. Sensors and Actuators B: Chemical, 299, Article 126969. https://doi.org/10.1016/j.snb.2019.126969
  • Cheng, Y., Liu, L., Liu, H., Xu, L., & Kuang, H. (2020). Rapid and sensitive detection of ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. Food and Agricultural Immunology, 31(1), 563–574. https://doi.org/10.1080/09540105.2020.1745157
  • Duan, H., Chen, X., Xu, W., Fu, J., Xiong, Y., & Wang, A. (2015). Quantum-DoT submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta, 132, 126–131. https://doi.org/10.1016/j.talanta.2014.08.076
  • Guo, L., Wu, X., Liu, L., Kuang, H., & Xu, C. (2018). Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small, 14(6), Article 1701782. https://doi.org/10.1002/smll.201701782
  • Guo, Y.-R., Liu, S.-Y., Gui, W.-J., & Zhu, G.-N. (2009). Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Analytical Biochemistry, 389(1), 32–39. https://doi.org/10.1016/j.ab.2009.03.020
  • He, K., Bu, T., Zhao, S., Bai, F., Zhang, M., Tian, Y., Sun, X., Dong, M., & Wang, L. (2021). Well-orientation strategy for direct binding of antibodies: Development of the immunochromatographic test using the antigen modified Fe2O3 nanoprobes for sensitive detection of aflatoxin B1. Food Chemistry, 364, Article 129583. https://doi.org/10.1016/j.foodchem.2021.129583
  • Hou, S., Ma, J., Cheng, Y., Wang, H., Sun, J., & Yan, Y. (2020). Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control, 117, Article 107331. https://doi.org/10.1016/j.foodcont.2020.107331
  • Huang, L., Jin, J., Ao, L., Jiang, C., Zhang, Y., Wen, H.-M., Wang, J., Wang, H., & Hu, J. (2020). Hierarchical plasmonic-fluorescent labels for highly sensitive lateral flow immunoassay with flexible dual-modal switching. ACS Applied Materials & Interfaces, 12(52), 58149–58160. https://doi.org/10.1021/acsami.0c18667
  • Jin, Y., Chen, Q., Luo, S., He, L., Fan, R., Zhang, S., Yang, C., & Chen, Y. (2021). Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chemistry, 336, Article 127718. https://doi.org/10.1016/j.foodchem.2020.127718
  • Keskin, E., & Eyupoglu, O. E. (2023). Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chemistry, 400, Article 134086. https://doi.org/10.1016/j.foodchem.2022.134086
  • Kim, D.-B., Jung, Y. S., Nam, T. G., Lee, S., & Yoo, M. (2022). Simultaneous determination of trichothecene mycotoxins in cereals by LC-MS/MS. Food Science and Biotechnology, 31(2), 165–174. https://doi.org/10.1007/s10068-021-01024-5
  • Kong, D., Xie, Z., Liu, L., Song, S., & Kuang, H. (2017). Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of citrinin in cereals. Food and Agricultural Immunology, 28(5), 754–766. https://doi.org/10.1080/09540105.2017.1312293
  • Lai, X., Lv, X., Zhang, G., Xiong, Z., Lai, W., & Peng, J. (2020). Highly specific anti-tylosin monoclonal antibody and its application in the quantum dot bead-based immunochromatographic assay. Food Analytical Methods, 13(12), 2258–2268. https://doi.org/10.1007/s12161-020-01846-9
  • Lee, H. J., & Ryu, D. (2017). Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 65(33), 7034–7051. https://doi.org/10.1021/acs.jafc.6b04847
  • Li, Z., Li, S., Zhang, G., Peng, W., Chang, Z., Zhang, X., Fan, Z., Chai, Y., Wang, F., Zhao, X., Li, D., Zhang, R., He, Z., Zou, W., Xu, K., Lei, W., Liu, P., Hao, J., Zhang, J., … Wu, Y. (2022). An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nature Immunology, 23(3), 423–430. https://doi.org/10.1038/s41590-022-01138-w
  • Liu, L., Huang, Q., Tanveer, Z. I., Jiang, K., Zhang, J., Pan, H., Luan, L., Liu, X., Han, Z., & Wu, Y. (2020). “Turn off-on” fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of ochratoxin A. Sensors and Actuators B: Chemical, 302, Article 127212. https://doi.org/10.1016/j.snb.2019.127212
  • Liu, L., Xu, L., Suryoprabowo, S., Song, S., & Kuang, H. (2018). Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine. Food and Agricultural Immunology, 29(1), 434–444. https://doi.org/10.1080/09540105.2017.1401043
  • Liu, Z., Chen, J., Zhao, S., Pang, Y., Shen, X., Lei, H., & Li, X. (2021). Immunochromatographic assays based on three kinds of nanoparticles for the rapid and highly sensitive detection of tylosin and tilmicosin in eggs. Microchimica Acta, 189(1), 42. https://doi.org/10.1007/s00604-021-05151-y
  • Liu, Z., Hua, Q., Wang, J., Liang, Z., Li, J., Wu, J., Shen, X., Lei, H., & Li, X. (2020). A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors & Bioelectronics, 158, Article 112178. https://doi.org/10.1016/j.bios.2020.112178
  • Lou, D., Ji, L., Fan, L., Ji, Y., Gu, N., & Zhang, Y. (2019). Antibody-oriented strategy and mechanism for the preparation of fluorescent nanoprobes for fast and sensitive immunodetection. Langmuir, 35(14), 4860–4867. https://doi.org/10.1021/acs.langmuir.9b00150
  • Lu, T., Guo, Y., Shi, J., Li, X., Wu, K., Li, X., Zeng, Z., & Xiong, Y. (2022). Identification and safety evaluation of ochratoxin A transformation product in rapeseed oil refining process. Journal of Agricultural and Food Chemistry, 70(47), 14931–14939. https://doi.org/10.1021/acs.jafc.2c04532
  • Manizan, A. L., Oplatowska-Stachowiak, M., Piro-Metayer, I., Campbell, K., Koffi-Nevry, R., Elliott, C., Akaki, D., Montet, D., & Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control, 87, 22–30. https://doi.org/10.1016/j.foodcont.2017.11.032
  • Mejri-Omrani, N., Miodek, A., Zribi, B., Marrakchi, M., Hamdi, M., Marty, J.-L., & Korri-Youssoufi, H. (2016). Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Analytica Chimica Acta, 920, 37–46. https://doi.org/10.1016/j.aca.2016.03.038
  • Ouyang, H., Wang, L., Yang, S., Wang, W., Wang, L., Liu, F., & Fu, Z. (2015). Chemiluminescence reaction kinetics-resolved multianalyte immunoassay strategy using a bispecific monoclonal antibody as the unique recognition reagent. Analytical Chemistry, 87(5), 2952–2958. https://doi.org/10.1021/ac5045093
  • Pei, K., Xiong, Y., Xu, B., Wu, K., Li, X., Jiang, H., & Xiong, Y. (2018). Colorimetric ELISA for ochratoxin A detection based on the urease-induced metallization of gold nanoflowers. Sensors and Actuators B: Chemical, 262, 102–109. https://doi.org/10.1016/j.snb.2018.01.193
  • Shan, S., Lai, W., Xiong, Y., Wei, H., & Xu, H. (2015). Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. Journal of Agricultural and Food Chemistry, 63(3), 745–753. https://doi.org/10.1021/jf5046415
  • Shen, J., Zhou, Y., Fu, F., Xu, H., Lv, J., Xiong, Y., & Wang, A. (2015). Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads. Talanta, 142, 145–149. https://doi.org/10.1016/j.talanta.2015.04.058
  • Shuib, N. S., & Saad, B. (2022). In-syringe dispersive micro-solid phase extraction method for the HPLC-fluorescence determination of aflatoxins in milk. Food Control, 132, Article 108510. https://doi.org/10.1016/j.foodcont.2021.108510
  • Tian, F., Woo, S. Y., Lee, S. Y., Park, S. B., Im, J. H., & Chun, H. S. (2022). Mycotoxins in soybean-based foods fermented with filamentous fungi: Occurrence and preventive strategies. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5131–5152. https://doi.org/10.1111/1541-4337.13032
  • Wang, F., Han, Y., Wang, S., Ye, Z., Wei, L., & Xiao, L. (2019). Single-particle LRET aptasensor for the sensitive detection of aflatoxin B1 with upconversion nanoparticles. Analytical Chemistry, 91(18), 11856–11863. https://doi.org/10.1021/acs.analchem.9b02599
  • Wang, F., Wang, H., Shen, Y.-D., Li, Y.-J., Dong, J.-X., Xu, Z.-L., Yang, J.-Y., Sun, Y.-M., & Xiao, Z.-L. (2016). Bispecific monoclonal antibody-based multianalyte ELISA for furaltadone metabolite, malachite green, and leucomalachite green in aquatic products. Journal of Agricultural and Food Chemistry, 64(42), 8054–8061. https://doi.org/10.1021/acs.jafc.6b03233
  • Wang, Z., Xing, K., Ding, N., Wang, S., Zhang, G., & Lai, W. (2022). Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. Journal of Hazardous Materials, 423, Article 127204. https://doi.org/10.1016/j.jhazmat.2021.127204
  • Wei, J., Hu, Q., Gao, Y., Hao, N., Qian, J., & Wang, K. (2021). A multiplexed self-powered dual-photoelectrode biosensor for detecting dual analytes based on an electron-transfer-regulated conversion strategy. Analytical Chemistry, 93(15), 6214–6222. https://doi.org/10.1021/acs.analchem.1c00503
  • Wen, K., Bai, Y., Wei, Y., Li, C., Shen, J., & Wang, Z. (2020). Influence of small molecular property on antibody response. Journal of Agricultural and Food Chemistry, 68(39), 10944–10950. https://doi.org/10.1021/acs.jafc.0c04333
  • Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public health impacts of foodborne mycotoxins. Annual Review of Food Science and Technology, 5(1), 351–372. https://doi.org/10.1146/annurev-food-030713-092431
  • Wu, Y., Wu, M., Liu, C., Tian, Y., Fang, S., Yang, H., Li, B., & Liu, Q. (2021). Colloidal gold immunochromatographic test strips for broad-spectrum detection of salmonella. Food Control, 126, Article 108052. https://doi.org/10.1016/j.foodcont.2021.108052
  • Xiong, Z., Wang, Q., Xie, Y., Li, N., Yun, W., & Yang, L. (2021). Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chemistry, 338, Article 128122. https://doi.org/10.1016/j.foodchem.2020.128122
  • Yang, S., Yi, X., Mao, X., Liu, Y., Zhang, S., & Li, Y. (2018). Integrated immunoassay-based broad detection of multi-class mycotoxins. Food and Agricultural Immunology, 29(1), 615–624. https://doi.org/10.1080/09540105.2018.1424121
  • Zhang, J., Xia, Y.-K., Chen, M., Wu, D.-Z., Cai, S.-X., Liu, M.-M., He, W.-H., & Chen, J.-H. (2016). A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB1. Sensors and Actuators B: Chemical, 235, 79–85. https://doi.org/10.1016/j.snb.2016.05.061
  • Zhang, K., Cai, H., Lu, M., Wei, D., Yin, J., Ding, N., Lai, W., & Peng, J. (2022). Quantum dot nanobead immunochromatographic assay based on bispecific monoclonal antibody for the simultaneous detection of aflatoxin B1 and amantadine. Food and Agricultural Immunology, 33(1), 403–418. https://doi.org/10.1080/09540105.2022.2080188
  • Zhang, X., Feng, M., Liu, L., Xing, C., Kuang, H., Peng, C., Wang, L., & Xu, C. (2013). Detection of aflatoxins in tea samples based on a class-specific monoclonal antibody. International Journal of Food Science & Technology, 48(6), 1269–1274. https://doi.org/10.1111/ijfs.12086
  • Zhu, W., Li, L., Zhou, Z., Yang, X., Hao, N., Guo, Y., & Wang, K. (2020). A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chemistry, 319, Article 126544. https://doi.org/10.1016/j.foodchem.2020.126544