933
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exosomes derived from berberine-treated bone marrow mesenchymal stem cells ameliorate inflammatory arthritis in rats with collagen-induced rheumatoid arthritis

, , , & ORCID Icon
Article: 2220566 | Received 02 Mar 2023, Accepted 25 May 2023, Published online: 06 Jul 2023

References

  • Adamopoulos, I. E., Chao, C. C., Geissler, R, Laface, D., Blumenschein, W., Iwakura, Y., McClanahan, T., & Bowman, E. P. (2010). Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Research & Therapy, 12(1), R29. https://doi.org/10.1186/ar2936
  • Amadi-Obi, A., Yu, C. R., Liu, X., Mahdi, R. M., Clarke, G. L., Nussenblatt, R. B., Gery, I., Lee, Y. S., & Egwuagu, C. E. (2007). TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nature Medicine, 13(6), 711–718. https://doi.org/10.1038/nm1585
  • Ayati, S. H., Fazeli, B., Momtazi-Borojeni, A. A., Cicero, A. F. G., Pirro, M., & Sahebkar, A. (2017). Regulatory effects of berberine on microRNome in cancer and other conditions. Critical Reviews in Oncology/Hematology, 116(2017), 147–158. https://doi.org/10.1016/j.critrevonc.2017.05.008
  • Banerjee, P., Kumar, T., Sarangi, S. C., Meetei, U. D., Devi, A. S., & Kumar, R. (2021). Anti-inflammatory potential of aqueous extract of Elsoltzia stachyodes on experimental models of inflammation in rats. Journal of Natural Science, Biology and Medicine, 12(1), 104.
  • Baroroh, H. N., Nugroho, A. E., Lukitaningsih, E., & Nurrochmad, A. (2021). Immune-enhancing effect of Bengkoang (Pachyrhizus erosus (L.) Urban) fiber fractions on mouse peritoneal macrophages, lymphocytes, and cytokines. Journal of Natural Science, Biology and Medicine, 12(1), 84–92. https://doi.org/10.4103/jnsbm.JNSBM_53_20
  • Barton, N. J., Stevens, D. A., Hughes, J. P., Rossi, A. G., Chessell, I. P., Reeve, A. J., & McQueen, D. S. (2007). Demonstration of a novel technique to quantitatively assess inflammatory mediators and cells in rat knee joints. Journal of Inflammation (London, England), 4(1), 13. https://doi.org/10.1186/1476-9255-4-13
  • Beal, A. M., Ramos-Hernández, N., Riling, C. R., Nowelsky, E. A., & Oliver, P. M. (2012). TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation. Nature Immunology, 13(1), 77–85. https://doi.org/10.1038/ni.2154
  • Bertolini, D. R., Nedwin, G. E., Bringman, T. S., Smith, D. D., & Mundy, G. R. (1986). Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature, 319(6053), 516–518. https://doi.org/10.1038/319516a0
  • Brand, D. D., Latham, K. A., & Rosloniec, E. F. (2007). Collagen-induced arthritis. Nature Protocols, 2(5), 1269–1275. https://doi.org/10.1038/nprot.2007.173
  • Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Developmental Biology, 4(83), 83–92.
  • Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D., & Guma, M. (2017). Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Research & Therapy, 19(1), 1–12. https://doi.org/10.1186/s13075-017-1303-3
  • Chabaud, M., Garnero, P., Dayer, J. M., Guerne, P. A., Fossiez, F., & Miossec, P. (2000). Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine, 12(7), 1092–1099. https://doi.org/10.1006/cyto.2000.0681
  • Chabaud, M., Lubberts, E., Joosten, L., van Den Berg, W., & Miossec, P. (2001). IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Research, 3(3), 168–177. https://doi.org/10.1186/ar294
  • Chang, T. H., Wu, C. S., Chiou, S. H., Chang, C. H., & Liao, H. J. (2022). Adipose-derived stem cell exosomes as a novel anti-inflammatory agent and the current therapeutic targets for rheumatoid arthritis. Biomedicines, 10(7). https://doi.org/10.3390/biomedicines10071725
  • Chen, W., & Konkel, J. E. (2015). Development of thymic Foxp3 + regulatory T cells: TGF-β matters. European Journal of Immunology, 45(4), 958–965. https://doi.org/10.1002/eji.201444999
  • Chen, Z., Wang, H., Xia, Y., Yan, F., & Lu, Y. (2018). Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. The Journal of Immunology, 201(8), 2472–2482. https://doi.org/10.4049/jimmunol.1800304
  • Choi, J. K., Kim, S. W., Kim, D. S., Lee, J. Y., Lee, S., Oh, H. M., Ha, Y. S., Yoo, J., Park, P. H., Shin, T. Y., & Kwon, T. K. (2016). Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes. Toxicology and Applied Pharmacology, 290(1), 1–9. https://doi.org/10.1016/j.taap.2015.11.005
  • Cosenza, S., Ruiz, M., Maumus, M., Jorgensen, C., & Noël, D. (2017). Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: Role of mesenchymal stem cell-derived vesicles. International Journal of Molecular Sciences, 18(4), 889. https://doi.org/10.3390/ijms18040889
  • Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., & Noël, D. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8(5), 1399. https://doi.org/10.7150/thno.21072
  • Crossfield, S. S. R., Buch, M. H., Baxter, P., Kingsbury, S. R., Pujades-Rodriguez, M., & Conaghan, P. G. (2021). Changes in the pharmacological management of rheumatoid arthritis over two decades. Rheumatology, 60(9), 4141–4151. https://doi.org/10.1093/rheumatology/keaa892
  • Dinesh, P., & Rasool, M. (2019). Berberine mitigates IL-21/IL-21R mediated autophagic influx in fibroblast-like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis. Apoptosis, 24(7), 644–661. https://doi.org/10.1007/s10495-019-01548-6
  • Dong, B., Liu, X., Li, J., Wang, B., Yin, J., Zhang, H., & Liu, W. (2022). Berberine encapsulated in exosomes derived from platelet-rich plasma promotes chondrogenic differentiation of the bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Biological and Pharmaceutical Bulletin, 45(10), 1444–1451. https://doi.org/10.1248/bpb.b22-00206
  • Edrees, A. F., Misra, S. N., & Abdou, N. I. (2005). Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: Correlation of TNF-alpha serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clinical and Experimental Rheumatology, 23(4), 469–474.
  • Ehteshamfar, S. M., Akhbari, M., Afshari, J. T., Seyedi, M., Nikfar, B., Shapouri-Moghaddam, A., Ghanbarzadeh, E., & Momtazi-Borojeni, A. A. (2020). Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. Journal of Cellular and Molecular Medicine, 24(23), 13573–13588. https://doi.org/10.1111/jcmm.16049
  • Fatahian, A., Haftcheshmeh, S. M., Azhdari, S., Farshchi, H. K., Nikfar, B., & Momtazi-Borojeni, A. A. (2020). Promising anti-atherosclerotic effect of berberine: Evidence from in vitro, in vivo, and clinical studies. Reviews of Physiology, Biochemistry and Pharmacology, 178, 83–110. https://doi.org/10.1007/112_2020_42
  • Feng, Y., Cheung, K.-F., Wang, N., Liu, P., Nagamatsu, T., & Tong, Y. (2009). Chinese medicines as a resource for liver fibrosis treatment. Chinese Medicine, 4(1), 1–11. https://doi.org/10.1186/1749-8546-4-16
  • Haftcheshmeh, S. M., Abedi, M., Mashayekhi, K., Mousavi, M. J., Navashenaq, J. G., Mohammadi, A., & Momtazi-Borojeni, A. A. (2022). Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytotherapy Research, 36(3), 1216–1230. https://doi.org/10.1002/ptr.7407
  • Hajavi, J., Esmaeili, S. A., Varasteh, A. R., Vazini, H., Atabati, H., Mardani, F., Momtazi-Borojeni, A. A., Hashemi, M., Sankian, M., & Sahebkar, A. (2019). The immunomodulatory role of probiotics in allergy therapy. Journal of Cellular Physiology, 234(3), 2386–2398. https://doi.org/10.1002/jcp.27263
  • Hernández-Palma, L.A., García-Arellano, S., Bucala, R., Llamas-Covarrubias, MA., De la Cruz-Mosso, U., Oregon-Romero, E., Cerpa-Cruz, S., Parra-Rojas, I., Plascencia-Hernández, A., & Muñoz-Valle, J. F. (2019). Functional MIF promoter haplotypes modulate Th17-related cytokine expression in peripheral blood mononuclear cells from control subjects and rheumatoid arthritis patients. Cytokine, 115(3), 89–96. https://doi.org/10.1016/j.cyto.2018.11.014
  • Hu, Z., Jiao, Q., Ding, J., Liu, F., Liu, R., Shan, L., Zeng, H., Zhang, J., & Zhang, W. (2011). Berberine induces dendritic cell apoptosis and has therapeutic potential for rheumatoid arthritis. Arthritis & Rheumatism, 63(4), 949–959. https://doi.org/10.1002/art.30202
  • Huang, D.-N., Wu, F.-F., Zhang, A.-H., Sun, H., & Wang, X.-J. (2021). Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacological Research, 169(5), 105667. https://doi.org/10.1016/j.phrs.2021.105667
  • Joosten, L. A. B., Helsen, M. M., Saxne, T., van de Loo, F. A. J., Heinegård, D., & van den Berg, W. B. (1999). IL-1αβ blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. The Journal of Immunology, 163(9), 5049–5055. https://doi.org/10.4049/jimmunol.163.9.5049
  • Joosten, L. A. B., Helsen, M. M., van de Loo, F. A., & van den Berg, W. B. (1996). Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis and Rheumatism, 39(5), 797–809. https://doi.org/10.1002/art.1780390513
  • Kalani, A., & Chaturvedi, P. (2017). Curcumin-primed and curcumin-loaded exosomes: Potential neural therapy. Neural Regeneration Research, 12(2), 205. https://doi.org/10.4103/1673-5374.200799
  • Kang, B. Y., Chung, S. W., Cho, D., & Kim, T. S. (2002). Involvement of p38 mitogen-activated protein kinase in the induction of interleukin-12 p40 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid. Biochemical Pharmacology, 63(10), 1901–1910. https://doi.org/10.1016/S0006-2952(02)00982-6
  • Koenders, M. I., Lubberts, E., Oppers-Walgreen, B., van den Bersselaar, L., Helsen, M. M., Di Padova, F. E., Boots, A. M., Gram, H., Joosten, L. A., & van den Berg, W. B. (2005). Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. The American Journal of Pathology, 167(1), 141–149. https://doi.org/10.1016/S0002-9440(10)62961-6
  • Kondo, Y., Yokosawa, M., Kaneko, S., Furuyama, K., Segawa, S., Tsuboi, H., Matsumoto, I., & Sumida, T. (2018). Transcriptional regulation of CD 4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis & Rheumatology, 70(5), 653–661. https://doi.org/10.1002/art.40398
  • Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., Ishiyama, S., Saito, S., Inoue, K., Kamatani, N., Gillespie, M. T., & Martin, T. J. (1999). IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. The Journal of Clinical Investigation, 103(9), 1345–1352. https://doi.org/10.1172/JCI5703
  • Lan, J., Zhao, Y., Dong, F., Yan, Z., Zheng, W., Fan, J., & Sun, G. (2015). Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. Journal of Ethnopharmacology, 161(4), 69–81. https://doi.org/10.1016/j.jep.2014.09.049
  • Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. Journal of Biological Chemistry, 280(24), 23349–23355. https://doi.org/10.1074/jbc.M502017200
  • Leman, M. A., Claramita, M., & Rahayu, G. R. (2021). Predicting factors on modeling health behavior: A systematic review. American Journal of Health Behavior, 45(2), 268–278. https://doi.org/10.5993/AJHB.45.2.7
  • Li, G. Q., Fang, Y. X., Liu, Y., Meng, F. R., Wu, X., Zhang, C. W., Zhang, Y., Liu, Y. Q., & Liu, D. (2021). MicroRNA-21 from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate rheumatoid arthritis. Therapeutic Advances in Chronic Disease, 12(4), 20406223211007369. https://doi.org/10.1177/20406223211007369
  • Li, S., Stöckl, S., Lukas, C., Herrmann, M., Brochhausen, C., König, M. A., Johnstone, B., & Grässel, S. (2021). Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p. Stem Cell Research & Therapy, 12(1), 252. https://doi.org/10.1186/s13287-021-02317-6
  • Li, Z., Zheng, J., Zhang, N., & Li, C. (2016). Berberine improves airway inflammation and inhibits NF-kappaB signaling pathway in an ovalbumin-induced rat model of asthma. Journal of Asthma, 53(10), 999–1005. https://doi.org/10.1080/02770903.2016.1180530
  • Liu, H., Li, R., Liu, T., Yang, L., Yin, G., & Xie, Q. (2020). Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Frontiers in Immunology, 11(8), 1912. https://doi.org/10.3389/fimmu.2020.01912
  • Lubberts, E., Joosten, L. A., van de Loo, F. A., Schwarzenberger, P., Kolls, J., & van den Berg, W. B. (2002). Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflammation Research, 51(2), 102–104. https://doi.org/10.1007/BF02684010
  • Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., Van Den Bersselaar, L., Coenen-de Roo, C. J., Joosten, L. A., & Van Den Berg, W. B. (2004). Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis and Rheumatism, 50(2), 650–659. https://doi.org/10.1002/art.20001
  • Ma, X., Chen, Z., Wang, L., Wang, G., Wang, Z., Dong, X., Wen, B., & Zhang, Z. (2018). The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Frontiers in Pharmacology, 9(7), 782. https://doi.org/10.3389/fphar.2018.00782
  • Matsuno, H., Yudoh, K., Katayama, R., Nakazawa, F., Uzuki, M., Sawai, T., Yonezawa, T., Saeki, Y., Panayi, G. S., Pitzalis, C., & Kimura T (2002). The role of TNF-α in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): A study using a human RA/SCID mouse chimera. Rheumatology, 41(3), 329–337. https://doi.org/10.1093/rheumatology/41.3.329
  • Meehan, R. T., Regan, E. A., Hoffman, E. D., Wolf, M. L., Gill, M. T., Crooks, J. L., Parmar, P. J., Scheuring, R. A., Hill, J. C., Pacheco, K. A., & Knight V. (2021). Synovial fluid cytokines, chemokines and MMP levels in osteoarthritis patients with knee pain display a profile similar to many rheumatoid arthritis patients. Journal of Clinical Medicine, 10(21), 5027. https://doi.org/10.3390/jcm10215027
  • Meng, H. Y., Chen, L. Q., & Chen, L. H. (2020). The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell. BMC Musculoskeletal Disorders, 21(1), 150. https://doi.org/10.1186/s12891-020-3159-y
  • Meng, Q., & Qiu, B. (2020). Exosomal MicroRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression. Frontiers in Physiology, 11(5), 441. https://doi.org/10.3389/fphys.2020.00441
  • Misra, S., Mondal, S., Chatterjee, S., Dutta, S., Sinha, D., Bhattacharjee, D., Lahiri, D., & Ghosh, A. (2022). Interleukin-17 as a predictor of subclinical synovitis in the remission state of rheumatoid arthritis. Cytokine, 153, 155837. https://doi.org/10.1016/j.cyto.2022.155837
  • Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X., Han, X., Li, J., Yang, M., Wang, Z., & Wei D. (2014). The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxidants & Redox Signaling, 20(4), 574–588. https://doi.org/10.1089/ars.2012.5116
  • Mohammadian Haftcheshmeh, S., & Momtazi-Borojeni, A. A. (2021). Berberine as a promising natural compound for the treatment of periodontal disease: A focus on anti-inflammatory properties. Journal of Cellular and Molecular Medicine, 25(24), 11333–11337. https://doi.org/10.1111/jcmm.17019
  • Mortazavi, H., Nikfar, B., Esmaeili, S. A., Rafieenia, F., Saburi, E., Chaichian, S., Gorji, M. A., & Momtazi-Borojeni, A. A. (2020). Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. European Journal of Medicinal Chemistry, 187(4), 111951. https://doi.org/10.1016/j.ejmech.2019.111951
  • Nikfar, S., Saiyarsarai, P., Tigabu, B. M., & Abdollahi, M. (2018). Efficacy and safety of interleukin-1 antagonists in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology International, 38(8), 1363–1383. https://doi.org/10.1007/s00296-018-4041-1
  • Osterman, C. J., Lynch, J. C., Leaf, P., Gonda, A., Ferguson Bennit, H. R., Griffiths, D., & Wall, N. R. (2015). Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS One, 10(7), e0132845.
  • Paradowska-Gorycka, A., Wajda, A., Romanowska-Próchnicka, K., Walczuk, E., Kuca-Warnawin, E., Kmiolek, T., Stypinska, B., Rzeszotarska, E., Majewski, D., Jagodzinski, P. P., & Pawlik, A. (2020). Th17/treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis. Frontiers in Immunology, 11(4), 572858. https://doi.org/10.3389/fimmu.2020.572858
  • Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., Hu, B., Wang, Y., & Li, X. (2016). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. International Journal of Biological Sciences, 12(7), 836–849. https://doi.org/10.7150/ijbs.14809
  • Qiu, B., Xu, X., Yi, P., & Hao, Y. (2020). Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. Journal of Cellular and Molecular Medicine, 24(18), 10855–10865. https://doi.org/10.1111/jcmm.15714
  • Rauf, A., Abu-Izneid, T., Khalil, A. A., Imran, M., Shah, Z. A., Emran, T. B., Mitra, S., Khan, Z., Alhumaydhi, F. A., Aljohani, A. S., & Khan, I. (2021). Berberine as a potential anticancer agent: A comprehensive review. Molecules, 26(23), 7368. https://doi.org/10.3390/molecules26237368
  • Rieu, S., Géminard, C., Rabesandratana, H., Sainte-Marie, J., & Vidal, M. (2000). Exosomes released during reticulocyte maturation bind to fibronectin via integrin α4β1. European Journal of Biochemistry, 267(2), 583–590. https://doi.org/10.1046/j.1432-1327.2000.01036.x
  • Rosloniec, E. F., Cremer, M., Kang, A. H., Myers, L. K., & Brand, D. D. (2010). Collagen-induced arthritis. Current Protocols in Immunology, 89(1), 15–15. https://doi.org/10.1002/0471142735.im1505s89
  • Savina, A., Furlán, M., Vidal, M., & Colombo, M. I. (2003). Exosome release is regulated by a calcium-dependent mechanism in K562 cells. Journal of Biological Chemistry, 278(22), 20083–20090. https://doi.org/10.1074/jbc.M301642200
  • Sharma, A., Sharma, R., Kumar, D., & Padwad, Y. (2020). Berberis lycium Royle fruit extract mitigates oxi-inflammatory stress by suppressing NF-κB/MAPK signalling cascade in activated macrophages and Treg proliferation in splenic lymphocytes. Inflammopharmacology, 28(4), 1053–1072. https://doi.org/10.1007/s10787-018-0548-z
  • Shen, P., Jiao, Y., Miao, L., Jh, C., & Momtazi-Borojeni, A. A. (2020). Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. Journal of Cellular and Molecular Medicine, 24(21), 12234–12245. https://doi.org/10.1111/jcmm.15803
  • Shetty, S. S., Sharma, M., Kabekkodu, S. P., Kumar, N. V. A., Satyamoorthy, K., & Radhakrishnan, R. (2021). Understanding the molecular mechanism associated with reversal of oral submucous fibrosis targeting hydroxylysine aldehyde-derived collagen cross-links. Journal of Carcinogenesis, 20(1), 9.
  • Su, Y., Liu, Y., Ma, C., Guan, C., Ma, X., & Meng, S. (2021). Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway. Journal of Orthopaedic Surgery and Research, 16(1), 116. https://doi.org/10.1186/s13018-021-02248-1
  • Sujitha, S., Dinesh, P., & Rasool, M. (2018). Berberine modulates ASK1 signaling mediated through TLR4/TRAF2 via upregulation of miR-23a. Toxicology and Applied Pharmacology, 359(11), 34–46. https://doi.org/10.1016/j.taap.2018.09.017
  • Sujitha, S., Dinesh, P., & Rasool, M. (2020). Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. European Journal of Pharmaceutics and Biopharmaceutics, 149(4), 170–191. https://doi.org/10.1016/j.ejpb.2020.02.007
  • Tavasolian, F., Moghaddam, A. S., Rohani, F., Abdollahi, E., Janzamin, E., Momtazi-Borojeni, A. A., Moallem, S. A., Jamialahmadi, T., & Sahebkar, A. (2020). Exosomes: Effectual players in rheumatoid arthritis. Autoimmunity Reviews, 19(6), 102511. https://doi.org/10.1016/j.autrev.2020.102511
  • Taverna, S., Fontana, S., Monteleone, F., Pucci, M., Saieva, L., De Caro, V., Cardinale, V. G., Giallombardo, M., Vicario, E., Rolfo, C., & De Leo, G. (2016). Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget, 7(21), 30420–30439. https://doi.org/10.18632/oncotarget.8483
  • Taverna, S., Giallombardo, M., Pucci, M., Flugy, A., Manno, M., Raccosta, S., Rolfo, C., De Leo, G., & Alessandro, R. (2015). Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget, 6(26), 21918–21933. https://doi.org/10.18632/oncotarget.4204
  • Tong, B., Dou, Y., Wang, T., Yu, J., Wu, X., Lu, Q., Chou, G., Wang, Z., Kong, L., Dai, Y., & Xia, Y. (2015). Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicology and Applied Pharmacology, 282(1), 90–99. https://doi.org/10.1016/j.taap.2014.11.008
  • Tu, J., Hong, W., Zhang, P., Wang, X., Körner, H., & Wei, W. (2018). Ontology and function of fibroblast-like and macrophage-like synoviocytes: How do they talk to each other and can they be targeted for rheumatoid arthritis therapy? Frontiers in Immunology, 9(6), 1467. https://doi.org/10.3389/fimmu.2018.01467
  • van den Berg, W. B., Joosten, L. A., Helsen, M., & van de Loo, F. A. (1994). Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clinical and Experimental Immunology, 95(2), 237–243. https://doi.org/10.1111/j.1365-2249.1994.tb06517.x
  • Wang, X., He, X., Zhang, C.-F., Guo, C.-R., Wang, C.-Z., & Yuan, C.-S. (2017). Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomedicine & Pharmacotherapy, 89(5), 887–893. https://doi.org/10.1016/j.biopha.2017.02.099
  • Wang, X.-h., Jiang, S.-m., & Sun, Q.-w. (2011). Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Experimental Biology and Medicine, 236(7), 859–866. https://doi.org/10.1258/ebm.2011.010366
  • Wang, Y.-Y., Tang, L.-Q., & Wei, W. (2018). Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway. European Journal of Pharmacology, 824(4), 185–192. https://doi.org/10.1016/j.ejphar.2018.01.034
  • Wang, Z., Chen, Z., Yang, S., Wang, Y., Huang, Z., Gao, J., Tu, S., & Rao, Z. (2014). Berberine ameliorates collagen-induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation, 37(5), 1789–1798. https://doi.org/10.1007/s10753-014-9909-y
  • Wu, H., Yan, S., Chen, J., Luo, X., Li, P., Jia, X., Dai, X., Wang, C., Huang, Q., Liu, L., Zhang, Y., Zhou, A., Chang, Y., Zhang, L., & Wei, W. (2016). JAK1-STAT3 blockade by JAK inhibitor SHR0302 attenuates inflammatory responses of adjuvant-induced arthritis rats and decreases Th17 and total B cells. Joint, Bone, Spine: Revue du Rhumatisme, 83(5), 525–532. https://doi.org/10.1016/j.jbspin.2015.09.002
  • Wu, H., Zhou, J., Zeng, C., Wu, D., Mu, Z., Chen, B., Xie, Y., Ye, Y., & Liu, J. (2016). Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget, 7(52), 87081–87090. https://doi.org/10.18632/oncotarget.13499
  • Yang, J., Wang, J., Liang, X., Zhao, H., Lu, J., Ma, Q., Jing, B., & Tian, F. (2019). IL-1β increases the expression of inflammatory factors in synovial fluid-derived fibroblast-like synoviocytes via activation of the NF-κB-mediated ERK-STAT1 signaling pathway. Molecular Medicine Reports, 20(6), 4993–5001.
  • Yeo, R. W., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. J., & Lim, S. K. (2013). Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341. https://doi.org/10.1016/j.addr.2012.07.001
  • You, S. H., Yoon, M. Y., & Moon, J. S. (2021). Antioxidant and anti-inflammatory activity study of fulvic acid. Journal of Natural Science, Biology and Medicine, 12(3), 285–289.
  • Yue, M., Xia, Y., Shi, C., Guan, C., Li, Y., Liu, R., Wei, Z., & Dai, Y. (2017). Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut. The FEBS Journal, 284(17), 2786–2801. https://doi.org/10.1111/febs.14147
  • Zhai, K. F., Duan, H., Cui, C. Y., Cao, Y. Y., Si, J. L., Yang, H. J., Wang, Y. C., Cao, W. G., Gao, G. Z., & Wei, Z. J. (2019). Liquiritin from Glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway. Journal of Agricultural and Food Chemistry, 67(10), 2856–2864. https://doi.org/10.1021/acs.jafc.9b00185
  • Zhai, K. F, Duan, H., Shi, Y., Zhou, Y. R., Chen, Y., Zhang, Y. S., Gong, Z. P., Cao, W. G., Wu, J., & Wang, J. J. (2022). miRNAs from plasma extracellular vesicles are signatory noninvasive prognostic biomarkers against atherosclerosis in LDLr-/-mice. Oxidative Medicine and Cellular Longevity, 2022(8), 1–12.
  • Zhai, K., Duan, H., Wang, W., Zhao, S., Khan, G. J., Wang, M., Zhang, Y., Thakur, K., Fang, X., Wu, C., & Xiao, J. (2021). Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharmaceutica Sinica B, 11(11), 3493–3507. https://doi.org/10.1016/j.apsb.2021.03.032
  • Zhang, S., Chu, W. C., Lai, R. C., Lim, S. K., Hui, J. H. P., & Toh, W. S. (2016). Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis and Cartilage, 24(12), 2135–2140. https://doi.org/10.1016/j.joca.2016.06.022
  • Zhang, Y., Tu, B., Sha, Q., & Qian, J. (2022). Bone marrow mesenchymal stem cells-derived exosomes suppress miRNA-5189-3p to increase fibroblast-like synoviocyte apoptosis via the BATF2/JAK2/STAT3 signaling pathway. Bioengineered, 13(3), 6767–6780. https://doi.org/10.1080/21655979.2022.2045844
  • Zhao, J., Ouyang, Q., Hu, Z., Huang, Q., Wu, J., Wang, R., & Yang, M. A. (2016). A protocol for the culture and isolation of murine synovial fibroblasts. Biomedical Reports, 5(2), 171–175. https://doi.org/10.3892/br.2016.708