390
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Immunostimulatory activity of Paeonia lactiflora through TLR4-dependent activation of p38, JNK, and ERK1/2 in mouse macrophages, RAW264.7 cells

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2222930 | Received 19 Oct 2022, Accepted 04 Jun 2023, Published online: 06 Jul 2023

References

  • Bai, Y., Jiang, Y., Liu, T., Li, F., Zhang, J., Luo, Y., Zhang, L., Yan, G., Feng, Z., Li, X., Wang, X., & Hu, W. (2019). Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signaling pathways in RAW264.7 cells and prevents cyclophosphamide-induced immunosuppression in mice. Journal of Ethnopharmacology, 228, 179–187. https://doi.org/10.1016/j.jep.2018.09.032
  • Barbara, J. A., Van Ostade, X., & Lopez, A. F. (1996). Tumour necrosis factor-alpha (TNF-α): the good, the bad and potentially very effective. Immunology and Cell Biology, 74(5), 434–443. https://doi.org/10.1038/icb.1996.73
  • Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). The role of nitric oxide in innate immunity. Immunological Reviews, 173(1), 17–26. https://doi.org/10.1034/j.1600-065X.2000.917307.x
  • Chen, G., Guo, L. X., Deng, X. H., Yin, Z. Y., & Jing, J. J. (2008). Effects of total glucosides of paeony on nitric oxide and inducible nitric oxide synthase production in macrophages and its mechanism. Zhongguo Mian Yi Xue Za Zhi, 24, 345–347.
  • Coskun, M., Olsen, J., Seidelin, J. B., & Nielsen, O. H. (2011). MAP kinases in inflammatory bowel disease. Clinica Chimica Acta, 412(7–8), 513–520. https://doi.org/10.1016/j.cca.2010.12.020
  • Han, E. H., Choi, J. H., Yong, P. H., Park, H. J., Choi, C. Y., Chung, Y. C., Seo, J. K., & Jeong, H. G. (2009). Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food and Chemical Toxicology, 47(1), 62–69. https://doi.org/10.1016/j.fct.2008.10.010
  • He, D. Y., & Dai, S. M. (2011). Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Frontiers in Pharmacology, 2, 10. https://doi.org/10.3389/fphar.2011.00010
  • Hirayama, D., Iida, T., & Nakase, H. (2018). The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International Journal of Molecular Sciences, 19(1), 92. https://doi.org/10.3390/ijms19010092
  • Jiang, S., Yin, H., Li, R., Shi, W., Mou, J., & Yang, J. (2021). The activation effects of fucoidan from sea cucumber Stichopus chloronotus on RAW264.7 cells via TLR2/4-NF-κB pathway and its structure-activity relationship. Carbohydrate Polymers, 270, 118353. https://doi.org/10.1016/j.carbpol.2021.118353
  • Kawai, T., & Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637–650. https://doi.org/10.1016/j.immuni.2011.05.006
  • Kim, I. D., & Ha, B. J. (2009). Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicology in Vitro, 23(6), 1014–1019. https://doi.org/10.1016/j.tiv.2009.06.019
  • Kim, S. B., Bo, Y. C., Yang, H. J., Sang, H. L., Han, S. B., Bang, Y. H., Kim, S. Y., & Mi, K. L. (2013). Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. Journal of Ethnopharmacology, 145(1), 393–396. https://doi.org/10.1016/j.jep.2012.11.007
  • Li, J., Chen, M. Z., & Xu, S. Y. (2007). Effect of total glucosides of paeony on prostaglandin E2 derived from peritoneal macrophages and related mechanisms in rats. Zhongguo Yao Li Xue Tong Bao, 10, 267–270.
  • Meidaninikjeh, S., Sabouni, N., Marzouni, H. Z., Bengar, S., Khalili, A., & Jafari, R. (2021). Monocytes and macrophages in COVID-19: Friends and foes. Life Sciences, 269, 119010. https://doi.org/10.1016/j.lfs.2020.119010
  • Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14(5), 329–342. https://doi.org/10.1038/nri3661
  • Seillet, C., Belz, G. T., & Mielke, L. A. (2014). Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine, 70(1), 1–10. https://doi.org/10.1016/j.cyto.2014.06.002
  • Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Frontiers in Pharmacology, 2020;11:1054. https://doi.org/10.3389/fphar.2020.01054
  • Wang, X., Li, N., Li, Y., Zhao, Y., Zhang, L., Sun, Y., Ohizumi, Y., Xu, J., & Guo, Y. A. (2022). novel polysaccharide from Paeonia lactiflora exerts anti-tumor activity via immunoregulation. Arabian Journal of Chemistry, 15(10), 104132. https://doi.org/10.1016/j.arabjc.2022.104132
  • Wang, Y., Tian, Y., Shao, J., Shu, X., Jia, J., Ren, X., & Guan, Y. (2018). Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. International Journal of Biological Macromolecules, 108, 300–306. https://doi.org/10.1016/j.ijbiomac.2017.12.025
  • Yang, F., Li, X., Yang, Y., Syivi-Tosuh, S. M., Wang, F., Li, H., & Wang, G. (2019). A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. International Journal of Biological Macromolecules, 140, 895–906. https://doi.org/10.1016/j.ijbiomac.2019.08.174
  • Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacology & Therapeutics. 2020;207:107452. doi:10.1016/j.pharmthera.2019.107452