674
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a novel polyclonal antibody against bovine αS1-casein IgE epitopes for prediction of potential allergenicity of milk in foods

, , , , , , , , , , ORCID Icon & show all
Article: 2222932 | Received 27 Oct 2022, Accepted 23 May 2023, Published online: 18 Jun 2023

References

  • Alexiou, A., Höfer, V., Dölle-Bierke, S., Grünhagen, J., Zuberbier, T., & Worm, M. (2022). Elicitors and phenotypes of adult patients with proven IgE-mediated food allergy and non-immune-mediated food hypersensitivity to food additives. Clinical and Experimental Allergy, 52(11), 1302–1310. https://doi.org/10.1111/cea.14203
  • Azdad, O., Mejrhit, N., & Aarab, L. (2018). Reduction of the allergenicity of cow's milk alpha-lactalbumin under heat-treatment and enzymatic hydrolysis in Moroccan population. European Annals of Allergy and Clinical Immunology, 50(4), 177–183. https://doi.org/10.23822/EurAnnACI.1764-1489.60
  • Aziz, S., Almajhdi, F. N., Waqas, M., Ullah, I., Salim, M. A., Khan, N. A., & Ali, A. (2022). Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Frontiers in Immunology, 13, 1004804. https://doi.org/10.3389/fimmu.2022.1004804
  • Bierig, T., Collu, G., Blanc, A., Poghosyan, E., & Benoit, R. M. (2020). Design, expression, purification, and characterization of a YFP-tagged 2019-nCoV spike receptor-binding domain construct. Frontiers in Bioengineering and Biotechnology, 8, 618615. https://doi.org/10.3389/fbioe.2020.618615
  • Broersen, K. (2020). Milk processing affects structure, bioavailability and immunogenicity of β-lactoglobulin. Foods, 9(7), 874. https://doi.org/10.3390/foods9070874
  • Cai, Q., Zhang, W. J., Zhu, Q. Q., & Chen, Q. (2016). Influence of heat treatment on the structure and core IgE-binding epitopes of rAra h 2.02. Food Chemistry, 202, 404–408. https://doi.org/10.1016/j.foodchem.2016.02.004
  • Candreva, A. M., Ferrer-Navarro, M., Bronsoms, S., Quiroga, A., Curciarello, R., Cauerhff, A., Petruccelli, S., Docena, G. H., & Trejo, S. A. (2017). Identification of cross-reactive B-cell epitopes between Bos d 9.0101(Bos Taurus) and Gly m 5.0101 (Glycine max) by epitope mapping MALDI-TOF MS. Proteomics, 17(15–16), 1700069. https://doi.org/10.1002/pmic.201700069
  • Candreva, A. M., Smaldini, P. L., Curciarello, R., Cauerhff, A., Fossati, C. A., Docena, G. H., & Petruccelli, S. (2015). Cross-reactivity between the soybean protein p34 and bovine caseins. Allergy Asthma & Immunology Research, 7(1), 60–68. https://doi.org/10.4168/aair.2015.7.1.60
  • Candreva, A. M., Smaldini, P. L., Curciarello, R., Fossati, C. A., Docena, G. H., & Petruccelli, S. (2016). The major soybean allergen Gly m Bd 28 K induces hypersensitivity reactions in mice sensitized to cow's milk proteins. Journal of Agricultural and Food Chemistry, 64(7), 1590–1599. https://doi.org/10.1021/acs.jafc.5b05623
  • Chakrapani, N., Fischer, J., Swiontek, K., Codreanu-Morel, F., Hannachi, F., Morisset, M., Mugemana, C., Bulaev, D., Blank, S., Bindslev-Jensen, C., Biedermann, T., Ollert, M., & Hilger, C. (2022). α-Gal present on both glycolipids and glycoproteins contributes to immune response in meat-allergic patients. Journal of Allergy and Clinical Immunology, 150(2), 396–405.e11. https://doi.org/10.1016/j.jaci.2022.02.030
  • Chang, X. J., Zhou, X. Y., Tang, Y., Zhang, Y., Yuan, J. L., Li, X., Yang, A. S., Tong, P., Wu, Z. H., & Chen, H. B. (2022). Effect of processing on the structure and allergenicity of peanut allergen Ara h 2 roasted in a matrix. Journal of Agricultural and Food Chemistry, 70(2), 626–633. https://doi.org/10.1021/acs.jafc.1c06828
  • Chatchatee, P., Jarvinen, K. M., Bardina, L., Beyer, K., & Sampson, H. A. (2001). Identification of IgE- and IgG-binding epitopes on alpha(s1)-casein: Differences in patients with persistent and transient cow's milk allergy. Journal of Allergy and Clinical Immunology, 107(2), 379–383. https://doi.org/10.1067/mai.2001.112372
  • Dickey, A., Wang, N., Cooper, E., Tull, L., Breedlove, D., Mason, H., Liu, D., & Wang, K. Y. J. (2017). Transient expression of lumbrokinase (PI239) in tobacco (Nicotiana tabacum) using a geminivirus-based single replicon system dissolves fibrin and blood clots. Evidence-based Complementary and Alternative Medicine, 2017, 6093017. https://doi.org/10.1155/2017/6093017
  • Fang, M. L., Li, J. L., Wang, H., Yang, M., Zhang, Y. S., Zhou, L., Wei, H. F., Yang, G., Yu, Y., Wei, X. F., Yu, Y. L., Wang, L. Y., & Wan, M. (2012). Correlation between efficacy and structure of recombinant epitope vaccines against bovine type O foot and mouth disease virus. Biotechnology Letters, 34(5), 839–847. https://doi.org/10.1007/s10529-012-0856-0
  • Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of cow's milk allergy. Nutrients, 11(5), 1051. https://doi.org/10.3390/nu11051051
  • Giannetti, A., Vespasiani, G. T., Ricci, G., Miniaci, A., di Palmo, E., & Pession, A. (2021). Cow's milk protein allergy as a model of food allergies. Nutrients, 13(5), 1525. https://doi.org/10.3390/nu13051525
  • He, S. F., Li, X., Gao, J. Y., Tong, P., & Chen, H. B. (2017). Development of sandwich ELISA for testing bovine beta-lactoglobulin allergenic residues by specific polyclonal antibody against human IgE binding epitopes. Food Chemistry, 227, 33–40. https://doi.org/10.1016/j.foodchem.2017.01.060
  • He, S. F., Li, X., Gao, J. Y., Tong, P., & Chen, H. B. (2018a). Development of a H2O2-sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine beta-lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519–526. https://doi.org/10.1002/jsfa.8489
  • He, S. F., Li, X., Gao, J. Y., Tong, P., Lu, J., & Chen, H. B. (2016). Preparation, immunological characterization and polyclonal antibody development for recombinant epitope tandem derived from bovine β-lactoglobulin. Food and Agricultural Immunology, 27(6), 806–819. https://doi.org/10.1080/09540105.2016.1183596
  • He, S. F., Li, X., Wu, Y., Wu, S. D., Wu, Z. H., Yang, A. S., Tong, P., Yuan, J. L., Gao, J. Y., & Chen, H. B. (2018). Highly sensitive detection of bovine beta-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. Journal of Agricultural and Food Chemistry, 66(44), 11830–11838. https://doi.org/10.1021/acs.jafc.8b04086
  • He, S. F., Long, C. Y., Wang, J., Xiong, M., Zhao, J. J., Yan, Y., Dong, Y. P., Li, X., & Chen, H. B. (2022). Purification, identification and polyclonal antibody development for cow’s milk major allergen αS1-casein. Science and Technology of Food Industry (in Chinese with English Abstract), 43(15), 106–114. https://doi.org/10.13386/j.issn1002-0306.2021110034.
  • Huang, M. J., Yang, F., Wu, Y., Meng, X. Y., Shi, L. B., Chen, H. B., & Li, X. (2023). Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Frontiers in Nutrition, 9, 1038466. https://doi.org/10.3389/fnut.2022.1038466
  • Jarvinen, K. M., Beyer, K., Vila, L., Chatchatee, P., Busse, P. J., & Sampson, H. A. (2002). B-cell epitopes as a screening instrument for persistent cow's milk allergy. Journal of Allergy and Clinical Immunology, 110(2), 293–297. https://doi.org/10.1067/mai.2002.126080
  • Knipping, K., Simons, P. J., Buelens-Sleumer, L. S., Cox, L., den Hartog, M., de Jong, N., Teshima, R., Garssen, J., Boon, L., & Knippels, L. M. J. (2014). Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates. PLoS One, 9(8), e106025. https://doi.org/10.1371/journal.pone.0106025
  • Kordesedehi, R., Taheri-Kafrani, A., Rabbani-Khorasgani, M., Kazemi, R., Mutangadura, D., & Haertle, T. (2018). Modification of IgE binding to αS1-casein by proteolytic activity of enterococcus faecium isolated from Iranian camel milk samples. Journal of Biotechnology, 276–277, 10–14. https://doi.org/10.1016/j.jbiotec.2018.04.005
  • Lisson, M., Novak, N., & Erhardt, G. (2014). Immunoglobulin E epitope mapping by microarray immunoassay reveals differences in immune response to genetic variants of caseins from different ruminant species. Journal of Dairy Science, 97(4), 1939–1954. https://doi.org/10.3168/jds.2013-7355
  • Mariager, B., Sølve, M., Eriksen, H., & Brogren, C. H. (1994). Bovine β-lactoglobulin in hypoallergenic and ordinary infant formulars measured by an indirect competitive ELISA using monoclonal and polyclonal antibodies. Food and Agricultural Immunology, 6(1), 73–78. https://doi.org/10.1080/09540109409354815
  • Martin-Pedraza, L., Mayorga, C., Gomez, F., Bueno-Díaz, C., Blanca-Lopez, N., González, M., Martínez-Blanco, M., Cuesta-Herranz, J., Molina, E., Villalba, M., & Benedé, S. (2021). IgE-Reactivity pattern of tomato seed and peel nonspecific lipid-transfer proteins after in vitro gastrointestinal digestion. Journal of Agricultural and Food Chemistry, 69(11), 3511–3518. https://doi.org/10.1021/acs.jafc.0c06949
  • Muller-Renaud, S., Dupont, D., & Dulieu, P. (2005). Development of a biosensor immunoassay for the quantification of aS1-casein in milk. Journal of Dairy Research, 72(1), 57–64. https://doi.org/10.1017/s0022029904000664
  • Orcajo, J., Lavilla, M., & Martínez-de-Marañón, I. (2019). Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods. Analytica Chimica Acta, 1052, 163–169. https://doi.org/10.1016/j.aca.2018.11.048
  • Plebani, A., Restani, P., Naselli, A., Galli, C. L., Meini, A., Cavagni, G., Ugazio, A. G., & Poiesi, C. (1997). Monoclonal and polyclonal antibodies against casein components of cow milk for evaluation of residual antigenic activity in ‘hypoallergenic’ infant formulas. Clinical and Exjyerimcnial Allergy, 27(8), 949–956. PMID: 9291294. https://doi.org/10.1111/j.1365-2222.1997.tb01238.x
  • Ruiter, B., Tregoat, V., M'rabet, L., Garssen, J., Bruijnzeel-Koomen, C. A. F. M., Knol, E. F., & Hoffen, E. (2006). Characterization of T cell epitopes in αS1-casein in cow's milk allergic, atopic and non-atopic children. Clinical and Experimental Allergy, 36(3), 303–310. https://doi.org/10.1111/j.1365-2222.2006.02436.x
  • Sicherer, S. H., & Sampson, H. A. (2018). Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. Journal of Allergy and Clinical Immunology, 141(1), 41–58. https://doi.org/10.1016/j.jaci.2017.11.003
  • Singh, A., Upadhyay, V., Singh, A., & Panda, A. K. (2020). Structure-function relationship of inclusion bodies of a multimeric protein. Frontiers in Microbiology, 11, 876. https://doi.org/10.3389/fmicb.2020.00876
  • Singh, A. P., Prabhu, S. N., Nagaleekar, V. K., Dangi, S. K., Prakash, C., & Singh, V. P. (2020a). Immunogenicity assessment of clostridium perfringens type D epsilon toxin epitope-based chimeric construct in mice and rabbit. 3 Biotech, 10(9), 406. https://doi.org/10.1007/s13205-020-02400-4
  • Tasaniyananda, N., Tungtrongchitr, A., Seesuay, W., Sakolvaree, Y., Aiumurai, P., Indrawattana, N., Chaicumpa, W., & Sookrung, N. (2018). Quantification of Fel d 1 in house dust samples of cat allergic patients by using monoclonal antibody specific to a novel IgE-binding epitope. Asian Pacific Journal of Allergy and Immunology, 36(1), 8–15. https://doi.org/10.12932/AP0876
  • Treweek, T. M., Thorn, D. C., Price, W. E., Price, W. E., & Carver, J. A. (2011). The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein. Archives of Biochemistry and Biophysics, 510(1), 42–52. https://doi.org/10.1016/j.abb.2011.03.012
  • Van Esch, B. C. A. M., Van Bilsen, J. H. M., Gros-Van Hest, M., Kleinjans, L., Belzer, C., Jeurink, P. V., Garssen, J., Smit, J. J., Pieters, R. H. H., & Knippels, L. M. J. (2020). A multi-center assessment to compare residual allergenicity of partial hydrolyzed whey proteins in a murine model for cow's milk allergy - comparison to the single parameter Guinea pig model. Toxicology Letters, 333, 312–321. https://doi.org/10.1016/j.toxlet.2020.05.020
  • Vencia, W., Minale, P., Migone, L., Lazzara, F., Vito, G., Ferrari, A., & Razzuoli, E. (2019). Effects of thermal treatment on walnut detection and allergenicity. Journal of the Science of Food and Agriculture, 99(5), 2636–2640. https://doi.org/10.1002/jsfa.9428
  • Villa, C., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2018). Bovine milk allergens: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 137–164. https://doi.org/10.1111/1541-4337.12318
  • Wroblewska, B., Kaliszewska-Suchodola, A., Fuc, E., Markiewicz, L. H., Ogrodowczyk, A. M., Złotkowska, D., & Wasilewska, E. (2020). Effect of low-immunogenic yogurt drinks and probiotic bacteria on immunoreactivity of cow's milk proteins and tolerance induction-In vitro and in vivo studies. Nutrients, 12(11), 3390. https://doi.org/10.3390/nu12113390
  • Xu, L., Gong, Y. S., Gern, J. E., & Lucey, J. A. (2020). Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy. Journal of Dairy Science, 103(2), 1141–1150. https://doi.org/10.3168/jds.2019-17187
  • Yang, X., Liu, Y., Guo, X. D., Bai, Q., Zhu, X. F., Ren, H., Chen, Q. W., Yue, T. L., & Long, F. Y. (2019). Antiallergic activity of Lactobacillus plantarum against peanut allergy in a Balb/c mouse model. Food and Agricultural Immunology, 30(1), 762–772. https://doi.org/10.1080/09540105.2019.1631261
  • Zhang, Z., Ma, R. D., Xu, Y. P., Chi, L., Li, Y., Mu, G. Q., & Zhu, X. M. (2022). Investigation of the structure and allergic potential of whey protein by both heating sterilization and simulation with molecular dynamics. Foods, 11(24), 4050. https://doi.org/10.3390/foods11244050