528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Immunomodulation of RAW264.7 cells by CP80-1, a polysaccharide of Cordyceps cicadae, via Dectin-1/Syk/NF-κB signaling pathway

, , , , , , , & show all
Article: 2231172 | Received 24 Nov 2022, Accepted 25 Jun 2023, Published online: 05 Sep 2023

References

  • Barker, S. A., Bourne, E. J., Stacey, M., & Whiffen, D. H. (1954). Infra-red spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose. Journal of the Chemical Society (Resumed), 171–176. https://doi.org/10.1039/jr9540000171
  • Bitter, T., & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical Biochemistry, 4(4), 330–334. https://doi.org/10.1016/0003-2697(62)90095-7
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Dambuza, I. M., & Brown, G. D. (2015). C-type lectins in immunity: Recent developments. Current Opinion in Immunology, 32, 21–27. https://doi.org/10.1016/j.coi.2014.12.002
  • Deng, J. S., Jiang, W. P., Chen, C. C., Lee, L. Y., Li, P. Y., Huang, W. C., Liao, J. C., Chen, H. Y., Huang, S. S., & Huang, G. J. (2020). Cordyceps cicadae mycelia ameliorate csplatin-induced acute kidney injury by suppressing the TLR4/NF-κB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxidative Medicine and Cellular Longevity, 1. https://doi.org/10.1155/2020/7912763
  • Dennehy, K. M., & Brown, G. D. (2007). The role of the β-glucan receptor Dectin-1 in control of fungal infection. Journal of Leukocyte Biology, 82(2), 253–258. https://doi.org/10.1189/jlb.1206753
  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • Feng, Y. (2016). Structural characterization and immunomodulatory effects of a polysaccharides isolated from Cordyceps cicadae [Master]. Jiangsu University.
  • Gao, L.-N., Feng, Q.-S., Zhang, X.-F., Wang, Q.-S., & Cui, Y.-L. (2016). Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation. Journal of Orthopaedic Research, 34(9), 1557–1568. https://doi.org/10.1002/jor.23155
  • Gao, X., Qi, J., Ho, C. T., Li, B., Mu, J., Zhang, Y., Hu, H., Mo, W., Chen, Z., & Xie, Y. (2020). Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydrate Polymers, 249, 116874. https://doi.org/10.1016/j.carbpol.2020.116874
  • Giavasis, I. (2014). Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology, 26, 162–173. https://doi.org/10.1016/j.copbio.2014.01.010
  • Guo, L., Xie, J., Ruan, Y., Zhou, L., Zhu, H., Yun, X., Jiang, Y., Lü, L., Chen, K., Min, Z., & Wen, Y. (2009). Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. International Immunopharmacology, 9(10), 1175–1182. https://doi.org/10.1016/j.intimp.2009.06.005
  • Guo, Y., Chen, X., & Gong, P. (2021). Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. International Journal of Biological Macromolecules, 183, 1753–1773. https://doi.org/10.1016/j.ijbiomac.2021.05.139
  • Hsu, J. H., Jhou, B. Y., Yeh, S. H., & Chen, Y. L. (2015). Healthcare functions of Cordyceps cicadae. Journal of Nutrition & Food Sciences, 5, 432. https://doi.org/10.4172/2155-9600.1000432
  • Im, S. A., Oh, S. T., Song, S., Kim, M. R., Kim, D. S., Woo, S. S., Jo, T. H., Park, Y. I., & Lee, C. K. (2005). Identification of optimal molecular size of modified aloe polysaccharides with maximum immunomodulatory activity. International Immunopharmacology, 5(2), 271–279. https://doi.org/10.1016/j.intimp.2004.09.031
  • Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V., & Karin, M. (2005). IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature, 434(7037), 1138–1143. https://doi.org/10.1038/nature03491
  • Lee, J. S., Kwon, D. S., Lee, K. R., Park, J. M., Ha, S.-J., & Hong, E. K. (2015). Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth. Carbohydrate Polymers, 120, 29–37. https://doi.org/10.1016/j.carbpol.2014.11.059
  • Li, C. R., Wang, Y. Q., Cheng, W. M., Chen, Z. A., Hywel-Jones, N., & Li, Z. Z. (2021). Review on research progress and prospects of cicada flower, Isaria cicadae (Ascomycetes). International Journal of Medicinal Mushrooms, 23(4), 81–91. https://doi.org/10.1615/IntJMedMushrooms.2021038085
  • Liu, A. (2012). Research and application of Cordyceps cicadae resources in China. Guizhou Science and Technology Publishing House.
  • Liu, X., Xie, J., Jia, S., Huang, L., Wang, Z., Li, C., & Xie, M. (2017). Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. International Journal of Biological Macromolecules, 98, 576–581. https://doi.org/10.1016/j.ijbiomac.2017.02.028
  • Liu, Y., Li, Q.-Z., Li, L.-D.-J., & Zhou, X.-W. (2021). Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. Journal of Ethnopharmacology, 275, 114130. https://doi.org/10.1016/j.jep.2021.114130
  • Nxumalo, W., Elateeq, A. A., & Sun, Y. (2020). Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? – A review. Journal of Ethnopharmacology, 257, 112879. https://doi.org/10.1016/j.jep.2020.112879
  • Olatunji, O. J., Feng, Y., Olatunji, O. O., Tang, J., Ouyang, Z., Su, Z., Wang, D., & Yu, X. (2016). Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and er stress damages induced by glutamate in PC12 cells. Environmental Toxicology and Pharmacology, 44, 53–61. https://doi.org/10.1016/j.etap.2016.02.009
  • Olatunji, O. J., Feng, Y., Olatunji, O. O., Tang, J., Wei, Y., Ouyang, Z., & Su, Z. (2016). Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage. Carbohydrate Polymers, 153, 187–195. https://doi.org/10.1016/j.carbpol.2016.06.108
  • Pan, D., Wang, L., Chen, C., Teng, B., Wang, C., Xu, Z., Hu, B., & Zhou, P. (2012). Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chemistry, 135(3), 1097–1103. https://doi.org/10.1016/j.foodchem.2012.05.071
  • Ren, L., Zhang, J., & Zhang, T. (2021). Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chemistry, 340, 127933. https://doi.org/10.1016/j.foodchem.2020.127933
  • Sang, X., Dong, J., Chen, F., Wei, L., Liu, Y., Zhang, M., Huang, B., & Wang, X. (2020). Molecular cloning and immune function study of an oyster IκB gene in the NF-κB signaling pathway. Aquaculture, 525, 735322. https://doi.org/10.1016/j.aquaculture.2020.735322
  • Schepetkin, I. A., & Quinn, M. T. (2006). Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. International Immunopharmacology, 6(3), 317–333. https://doi.org/10.1016/j.intimp.2005.10.005
  • Wang, B., Yan, L., Guo, S., Wen, L., Yu, M., Feng, L., & Jia, X. (2022). Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: A review. Frontiers in Nutrition, 9, 908175. https://doi.org/10.3389/fnut.2022.908175
  • Wang, J., Ouyang, Z., Zhao, M., Shang, L., Wang, F., Wang, Y., & Yang, J. (2014a). Optimization of extraction process of polysaccharides from Cordyceps cicadae by response surface methodology. Natural Product Research Development, 26(3), 438–443. https://doi.org/10.16333/j.1001-6880.2014.03.031
  • Wang, J., Yuan, Y., & Yue, T. (2014b). Immunostimulatory activities of β-D-glucan from Ganoderma Lucidum. Carbohydrate Polymers, 102, 47–54. https://doi.org/10.1016/j.carbpol.2013.10.087
  • Wang, K., Bao, L., Ma, K., Zhang, J., Chen, B., Han, J., Ren, J., Luo, H., & Liu, H. (2017). A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-A y mice. European Journal of Medicinal Chemistry, 127, 1035–1046. https://doi.org/10.1016/j.ejmech.2016.11.015
  • Wang, M., Yang, X. B., Zhao, J. W., Lu, C. J., & Zhu, W. (2017). Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb. Carbohydrate Polymers, 156, 390–402. https://doi.org/10.1016/j.carbpol.2016.09.033
  • Wu, J., Li, M., Liu, L., An, Q., Zhang, J., Zhang, J., Li, M., Duan, W., Liu, D., Li, Z., & Luo, C. (2013). Nitric oxide and interleukins are involved in cell proliferation of RAW264.7 macrophages activated by viili exopolysaccharides. Inflammation, 36(4), 954–961. https://doi.org/10.1007/s10753-013-9626-y
  • Xiao-Xiao, L. U., Jiang, Y. F., Hong, L. I., Ying-Ye, O. U., Zhang, Z. D., Hong-Ye, D. I., Dao-Feng, C. H. E. N., & Zhang, Y. Y. (2017). Polymyxin B as an inhibitor of lipopolysaccharides contamination of herb crude polysaccharides in mononuclear cells. Chinese Journal of Natural Medicines, 15(7), 487–494. https://doi.org/10.1016/S1875-5364(17)30074-2
  • Xu, Z. (2019). Characterization of Isaria cicadae Miquel polysaccharide JCH-1 and its immunomodulatory mecanism on RAW264.7 cells [Master]. Guangzhou University of Chinese Medicine.
  • Xu, Z., Lin, R., Hou, X., Wu, J., Zhao, W., Ma, H., Fan, Z., Li, S., Zhu, Y., & Zhang, D. (2020). Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway. International Journal of Biological Macromolecules, 164, 4329–4338. https://doi.org/10.1016/j.ijbiomac.2020.09.035
  • Xu, Z., Yan, X., Song, Z., Li, W., Zhao, W., Ma, H., Du, J., Li, S., & Zhang, D. (2018). Two heteropolysaccharides from Isaria cicadae Miquel differ in composition and potentially immunomodulatory activity. International Journal of Biological Macromolecules, 117, 610–616. https://doi.org/10.1016/j.ijbiomac.2018.05.164
  • Yin, Z., Liang, Z., Li, C., Wang, J., Ma, C., & Kang, W. (2021). Immunomodulatory effects of polysaccharides from edible fungus: A review. Food Science and Human Wellness, 10(4), 393–400. https://doi.org/10.1016/j.fshw.2021.04.001
  • Zeng, Z., Mou, D., Luo, L., Zhong, W., Duan, L., & Zou, X. (2021). Different cultivation environments affect the yield, bacterial community and metabolites of Cordyceps cicadae. Frontiers in Microbiology, 12(1022), 669785. https://doi.org/10.3389/fmicb.2021.669785
  • Zhang, T., Ye, J., Xue, C., Wang, Y., Liao, W., Mao, L., Yuan, M., & Lian, S. (2018). Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydrate Polymers, 197, 147–156. https://doi.org/10.1016/j.carbpol.2018.05.069
  • Zhao, Y., Zou, W., Du, J., & Zhao, Y. (2018). The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. Journal of Cellular Physiology, 233(10), 6425–6439. https://doi.org/10.1002/jcp.26461
  • Zhong, T. Y., Arancibia, S., Born, R., Tampe, R., Villar, J., Del Campo, M., Manubens, A., & Becker, M. I. (2016). Hemocyanins stimulate innate immunity by inducing different temporal patterns of proinflammatory cytokine expression in macrophages. The Journal of Immunology, 196(11), 4650–4662. https://doi.org/10.4049/jimmunol.1501156
  • Zhu, Y., Yu, X., Ge, Q., Li, J., Wang, D., Wei, Y., & Ouyang, Z. (2020). Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. International Journal of Biological Macromolecules, 157, 394–400. https://doi.org/10.1016/j.ijbiomac.2020.04.163
  • Zhu, Z. Y., Guo, M. Z., Liu, F., Luo, Y., Chen, L., Meng, M., Wang, X. T., & Zhang, Y. M. (2016). Preparation and inhibition on α- d -glucosidase of low molecular weight polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 93, 27–33. https://doi.org/10.1016/j.ijbiomac.2016.08.058
  • Zozo, B., Govender, N., Moodley, J., & Naicker, T. (2021). Expression of plasma nuclear factor-kappa b cells (NF-κB) and inhibitory subunit kappa B alpha (IκB-α) in HIV-associated pre-eclampsia. Hypertension in Pregnancy, 40(1), 15–20. https://doi.org/10.1080/10641955.2020.1854299