593
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phillyrin attenuates airway inflammation and Th2 cell activities in a mouse asthma model

, , , &
Article: 2231182 | Received 06 Mar 2023, Accepted 25 Jun 2023, Published online: 16 Jul 2023

References

  • Brusselle, G. G., & Koppelman, G. H. (2022). Biologic therapies for severe asthma. New England Journal of Medicine, 386(2), 157–171. https://doi.org/10.1056/NEJMra2032506
  • Carpaij, O. A., Burgess, J. K., Kerstjens, H. A. M., Nawijn, M. C., & van den Berge, M. (2019). A review on the pathophysiology of asthma remission. Pharmacology & Therapeutics, 201, 8–24. https://doi.org/10.1016/j.pharmthera.2019.05.002
  • Celakovska, J., Bukač, J., Ettlerc, K., Ettlerovad, K., & Krcmova, I. (2017). Atopic dermatitis in adolescents and adults – the evaluation of association with other allergic diseases and parameters. Food and Agricultural Immunology, 28(6), 933–948. https://doi.org/10.1080/09540105.2017.1320358
  • Chan, C. K., Kuo, M. L., Shen, J. J., See, L. C., Chang, H. H., & Huang, J. L. (2006). Ding Chuan Tang, a Chinese herb decoction, could improve airway hyper-responsiveness in stabilized asthmatic children: A randomized, double-blind clinical trial. Pediatric Allergy and Immunology, 17(5), 316–322. https://doi.org/10.1111/j.1399-3038.2006.00406.x
  • Chen, X., Corry, D. B., & Li, E. (2020). Mechanisms of allergy and adult asthma. Current Opinion in Allergy & Clinical Immunology, 20(1), 36–42. https://doi.org/10.1097/ACI.0000000000000601
  • González-Juárez, D. E., Escobedo-Moratilla, A., Flores, J., Hidalgo-Figueroa, S., Martínez-Tagüeña, N., Morales-Jiménez, J., Muñiz-Ramírez, A., Pastor-Palacios, G., Pérez-Miranda, S., Ramírez-Hernández, A., Trujillo, J., & Bautista, E. (2020). A review of the ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules, 25, 3283. https://doi.org/10.3390/molecules25143283
  • Guerau-de-Arellano, M., & Britt, R. D., Jr. (2022). Sterols in asthma. Trends in Immunology, 43(10), 792–799. https://doi.org/10.1016/j.it.2022.08.003
  • Hammad, H., & Lambrecht, B. N. (2021). The basic immunology of asthma. Cell, 184(6), 1469–1485. https://doi.org/10.1016/j.cell.2021.02.016
  • Huang, W. C., Huang, T. H., Yeh, K. W., Chen, Y. L., Shen, S. C., & Liou, C. J. (2021). Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. Journal of Ginseng Research, 45(6), 654–664. https://doi.org/10.1016/j.jgr.2021.03.002
  • Huang, W. C., Wu, S. J., Yeh, K. W., & Liou, C. J. (2022). Gypenoside A from Gynostemma pentaphyllum attenuates airway inflammation and Th2 cell activities in a murine asthma model. International Journal of Molecular Sciences, 23(14), 7699. https://doi.org/10.3390/ijms23147699
  • Koefoed, H. J. L., Zwitserloot, A. M., Vonk, J. M., & Koppelman, G. H. (2021). Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: A systematic literature review. Pediatric Allergy and Immunology, 32(6), 1238–1254. https://doi.org/10.1111/pai.13516
  • Kohn, C. M., & Paudyal, P. (2017). A systematic review and meta-analysis of complementary and alternative medicine in asthma. European Respiratory Review, 26, https://doi.org/10.1183/16000617.0092-2016
  • Lambrecht, B. N., Hammad, H., & Fahy, J. V. (2019). The cytokines of asthma. Immunity, 50(4), 975–991. https://doi.org/10.1016/j.immuni.2019.03.018
  • Liou, C. J., Chen, Y. L., Yu, M. C., Yeh, K. W., Shen, S. C., & Huang, W. C. (2020). Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants (Basel), 9(4), 295. https://doi.org/10.3390/antiox9040295
  • Liu, J. X., Zhang, Y., Yuan, H. Y., & Liang, J. (2021). The treatment of asthma using the Chinese Materia Medica. Journal of Ethnopharmacology, 269, 113558. https://doi.org/10.1016/j.jep.2020.113558
  • Maciag, M. C., & Phipatanakul, W. (2020). Prevention of asthma. Chest, 158(3), 913–922. https://doi.org/10.1016/j.chest.2020.04.011
  • Moran, A., & Pavord, I. D. (2020). Anti-IL-4/IL-13 for the treatment of asthma: The story so far. Expert Opinion on Biological Therapy, 20(3), 283–294. https://doi.org/10.1080/14712598.2020.1714027
  • Nishibe, S., Mitsui-Saitoh, K., Sakai, J., & Fujikawa, T. (2021). The biological effects of forsythia leaves containing the cyclic AMP Phosphodiesterase 4 inhibitor phillyrin. Molecules, 26(8), 2362. https://doi.org/10.3390/molecules26082362
  • Ntontsi, P., Papathanassiou, E., Loukides, S., Bakakos, P., & Hillas, G. (2018). Targeted anti-IL-13 therapies in asthma: Current data and future perspectives. Expert Opinion on Investigational Drugs, 27(2), 179–186. https://doi.org/10.1080/13543784.2018.1427729
  • Oppenheimer, J., Hoyte, F. C. L., Phipatanakul, W., Silver, J., Howarth, P., & Lugogo, N. L. (2022). Allergic and eosinophilic asthma in the era of biomarkers and biologics: Similarities, differences and misconceptions. Annals of Allergy, Asthma & Immunology, 129(2), 169–180. https://doi.org/10.1016/j.anai.2022.02.021
  • Pelaia, C., Heffler, E., Crimi, C., Maglio, A., Vatrella, A., Pelaia, G., & Canonica, G. W. (2022). Interleukins 4 and 13 in asthma: Key pathophysiologic cytokines and druggable molecular targets. Frontiers in Pharmacology, 13, 851940. https://doi.org/10.3389/fphar.2022.851940
  • Phillips, J. E. (2020). Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Frontiers in Pharmacology, 11, 259. https://doi.org/10.3389/fphar.2020.00259
  • Pincus, A. B., Fryer, A. D., & Jacoby, D. B. (2021). Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neuroscience Letters, 751, 135795. https://doi.org/10.1016/j.neulet.2021.135795
  • Pitlick, M. M., & Pongdee, T. (2022). Combining biologics targeting eosinophils (IL-5/IL-5R), IgE, and IL-4/IL-13 in allergic and inflammatory diseases. World Allergy Organization Journal, 15(11), 100707. https://doi.org/10.1016/j.waojou.2022.100707
  • Ramos-Ramírez, P., & Tliba, O. (2022). Glucocorticoid insensitivity in asthma: The unique role for airway smooth muscle cells. International Journal of Molecular Sciences, 23(16), 8966. https://doi.org/10.3390/ijms23168966
  • Shen, J. J., Chiang, M. S., Kuo, M. L., Leu, Y. L., Hwang, T. L., Liou, C. J., & Huang, W. C. (2011). Partially purified extract and viscolin from Viscum coloratum attenuate airway inflammation and eosinophil infiltration in ovalbumin-sensitized mice. Journal of Ethnopharmacology, 135(3), 646–653. https://doi.org/10.1016/j.jep.2011.03.065
  • Stern, J., Pier, J., & Litonjua, A. A. (2020). Asthma epidemiology and risk factors. Seminars in Immunopathology, 42(1), 5–15. https://doi.org/10.1007/s00281-020-00785-1
  • Sung, Y. Y., Lee, A. Y., & Kim, H. K. (2016). Forsythia suspensa fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. Journal of Ethnopharmacology, 187, 49–56. https://doi.org/10.1016/j.jep.2016.04.015
  • Tang, K., Zhong, B., Luo, Q., Liu, Q., Chen, X., Cao, D., Li, X., & Yang, S. (2022). Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. European Journal of Pharmacology, 927, 175022. https://doi.org/10.1016/j.ejphar.2022.175022
  • Verma, M., Liu, S., Michalec, L., Sripada, A., Gorska, M. M., & Alam, R. (2018). Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9(+) and IL-13(+) type 2 innate lymphoid cell subpopulations. Journal of Allergy and Clinical Immunology, 142(3), 793–803.e798. https://doi.org/10.1016/j.jaci.2017.10.020
  • Wang, M. C., Huang, W. C., Chen, L. C., Yeh, K. W., Lin, C. F., & Liou, C. J. (2022). Sophoraflavanone G from Sophora flavescens ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress in a murine asthma model. International Journal of Molecular Sciences, 23(11), 6104. https://doi.org/10.3390/ijms23116104
  • Wang, Z., Xia, Q., Liu, X., Liu, W., Huang, W., Mei, X., Luo, J., Shan, M., Lin, R., Zou, D., & Ma, Z. (2018). Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. Journal of Ethnopharmacology, 210, 318–339. https://doi.org/10.1016/j.jep.2017.08.040
  • Wu, S. J., Huang, W. C., Cheng, C. Y., Wang, M. C., Cheng, S. C., & Liou, C. J. (2022). Fisetin suppresses the inflammatory response and oxidative stress in bronchial epithelial cells. Nutrients, 14(9), 1841. https://doi.org/10.3390/nu14091841
  • Zhang, Y., Wang, X., Zhang, H., Tang, H., Hu, H., Wang, S., Wong, V. K. W., Li, Y., & Deng, J. (2021). Autophagy modulators from Chinese herbal medicines: Mechanisms and therapeutic potentials for asthma. Frontiers in Pharmacology, 12, 710679. https://doi.org/10.3389/fphar.2021.710679
  • Zheng, Q., Mu, X., Pan, S., Luan, R., & Zhao, P. (2023). Ephedrae herba: A comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology. Journal of Ethnopharmacology, 307, 116153. https://doi.org/10.1016/j.jep.2023.116153
  • Zhong, W. T., Wu, Y. C., Xie, X. X., Zhou, X., Wei, M. M., Soromou, L. W., Ci, X. X., & Wang, D. C. (2013). Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-κB activation in acute lung injury mice. Fitoterapia, 90, 132–139. https://doi.org/10.1016/j.fitote.2013.06.003
  • Zhou, C., Lu, M., Cheng, J., Rohani, E.R., Hamezah, H.S., Han, R., Tong, X., 2022. Review on the pharmacological properties of phillyrin. Molecules. 27(12), 3670. doi:10.3390/molecules27123670