403
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Untargeted metabolomics revealed the product formation rules of two fermented walnut milk

, , , , , & show all
Article: 2236807 | Received 29 Mar 2023, Accepted 10 Jul 2023, Published online: 22 Nov 2023

References

  • Adebo, O. A., & Gabriela Medina-Meza, I. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927
  • Adebo, O. A., Njobeh, P. B., Adebiyi, J. A., Gbashi, S., & Kayitesi, E. (2017). Food metabolomics: A new frontier in food analysis and its application to understanding fermented foods. In M. C. Hueda (Ed.), Functional food - Improve health through adequate food (Vol. 11, pp. 211–234). InTech. https://doi.org/10.5772/intechopen.69171
  • Adebo, O. A., Oyeyinka, S. A., Adebiyi, J. A., Feng, X., Wilkin, J. D., Kewuyemi, Y. O., Abrahams, A. M., & Tugizimana, F. (2021). Application of gas chromatography–mass spectrometry (GC-MS) -based metabolomics for the study of fermented cereal and legume foods: A review. International Journal of Food Science & Technology, 56(4), 1514–1534. https://doi.org/10.1111/ijfs.14794
  • Ares-Yebra, A., Garabal, J. I., Carballo, J., & Centeno, J. A. (2019). Formation of conjugated linoleic acid by a Lactobacillus plantarum strain isolated from an artisanal cheese: Evaluation in miniature cheeses. International Dairy Journal, 90, 98–103. https://doi.org/10.1016/j.idairyj.2018.11.007
  • Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., & Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 99, 58–71. https://doi.org/10.1016/j.foodres.2017.07.022
  • Bartkiene, E., Krungleviciute, V., Juodeikiene, G., Vidmantiene, D., & Maknickiene, Z. (2015). Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean: Solid state fermentation to improve the nutritional quality of lupin and soya bean. Journal of the Science of Food and Agriculture, 95(6), 1336–1342. https://doi.org/10.1002/jsfa.6827
  • Bian, H., Xiao, L., Liang, L., Xie, Y., Wang, H., Slevin, M., Tu, W.-J., & Wang, G. (2022). Polydatin prevents neuroinflammation and relieves depression via regulating Sirt1/HMGB1/NF-κB signaling in mice. Neurotoxicity Research, 40(5), 1393–1404. https://doi.org/10.1007/s12640-022-00553-z
  • Bocchi, S., Rocchetti, G., Elli, M., Lucini, L., Lim, C.-Y., & Morelli, L. (2021). The combined effect of fermentation of lactic acid bacteria and in vitro digestion on metabolomic and oligosaccharide profile of oat beverage. Food Research International, 142, 110216. https://doi.org/10.1016/j.foodres.2021.110216
  • Bulló, M., Nogués, M. R., López-Uriarte, P., Salas-Salvadó, J., & Romeu, M. (2010). Effect of whole walnuts and walnut-skin extracts on oxidant status in mice. Nutrition, 26(7–8), 823–828. https://doi.org/10.1016/j.nut.2009.09.002
  • Bunbupha, S., Apaijit, K., Maneesai, P., Prasarttong, P., & Pakdeechote, P. (2020). Nobiletin ameliorates high-fat diet-induced vascular and renal changes by reducing inflammation with modulating AdipoR1 and TGF-β1 expression in rats. Life Sciences, 260, 118398. https://doi.org/10.1016/j.lfs.2020.118398
  • Čelakovská, J., Bukač, J., Vaňková, R., Salavec, M., Krejsek, J., & Andrýs, C. (2021). Allergy to walnuts and hazelnuts in atopic dermatitis patients and analysis of sensitization to molecular components. Food and Agricultural Immunology, 32(1), 105–120. https://doi.org/10.1080/09540105.2021.1874883
  • Chen, Y.-H., Huang, P.-H., Lin, F.-Y., Chen, W.-C., Chen, Y.-L., Yin, W.-H., Man, K.-M., & Liu, P.-L. (2011). Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. European Journal of Integrative Medicine, 3(4), e317–e324. https://doi.org/10.1016/j.eujim.2011.09.002
  • Christensen, M. D., & Pederson, C. S. (1958). Factors affecting diacetyl production by lactic acid bacteria. Applied Microbiology, 6(5), 319–322. https://doi.org/10.1128/am.6.5.319-322.1958
  • Coda, R., Rizzello, C. G., Pinto, D., & Gobbetti, M. (2012). Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Applied and Environmental Microbiology, 78(4), 1087–1096. https://doi.org/10.1128/AEM.06837-11
  • Dai, Y., Chen, S.-R., Chai, L., Zhao, J., Wang, Y., & Wang, Y. (2019). Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical Reviews in Food Science and Nutrition, 59(sup1), S17–S29. https://doi.org/10.1080/10408398.2018.1501657
  • Dan, T., Chen, H., Li, T., Tian, J., Ren, W., Zhang, H., & Sun, T. (2019). Influence of lactobacillus plantarum P-8 on fermented milk flavor and storage stability. Frontiers in Microbiology, 9, 3133. https://doi.org/10.3389/fmicb.2018.03133
  • Das, G., Patra, J. K., Lee, S.-Y., Kim, C., Park, J. G., & Baek, K.-H. (2017). Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry. PLOS ONE, 12(7), e0181280. https://doi.org/10.1371/journal.pone.0181280
  • Delgado, F. J., González-Crespo, J., Cava, R., García-Parra, J., & Ramírez, R. (2010). Characterisation by SPME–GC–MS of the volatile profile of a Spanish soft cheese P.D.O. Torta del Casar during ripening. Food Chemistry, 118(1), 182–189. https://doi.org/10.1016/j.foodchem.2009.04.081
  • Feldman, E. B. (2002). The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. The Journal of Nutrition, 132(5), S1062–S1101. https://doi.org/10.1093/jn/132.5.1062S
  • Fiorino, G. M., Tlais, A. Z. A., Losito, I., Filannino, P., Gobbetti, M., & Di Cagno, R. (2023). Triacylglycerols hydrolysis and hydroxy- and epoxy-fatty acids release during lactic fermentation of plant matrices: An extensive study showing inter- and intra-species capabilities of lactic acid bacteria. Food Chemistry, 412, 135552. https://doi.org/10.1016/j.foodchem.2023.135552
  • García Arteaga, V., Demand, V., Kern, K., Strube, A., Szardenings, M., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2022). Enzymatic hydrolysis and fermentation of pea protein isolate and its effects on antigenic proteins, functional properties, and sensory profile. Foods (Basel, Switzerland), 11(1), 118. https://doi.org/10.3390/foods11010118
  • Grosso, A. L., Riveros, C., Asensio, C. M., Grosso, N. R., & Nepote, V. (2020). Improving walnuts’ preservation by using walnut phenolic extracts as natural antioxidants through a walnut protein-based edible coating. Journal of Food Science, 85(10), 3043–3051. https://doi.org/10.1111/1750-3841.15395
  • He, F., Liu, W., Wang, H., Zhang, Z., Gao, Y., Zhao, S., & Zhao, Y. (2010). The situation and prospects for further processing in China. Acta Horticulturae, 861(861), 79–82. https://doi.org/10.17660/ActaHortic.2010.861.9
  • Hunaefi, D., Akumo, D. N., & Smetanska, I. (2013). Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnology, 27(1), 66–85. https://doi.org/10.1080/08905436.2012.755694
  • Hunaefi, D., Gruda, N., Riedel, H., Akumo, D. N., Saw, N. M. M. T., & Smetanska, I. (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Food Biotechnology, 27(4), 279–302. https://doi.org/10.1080/08905436.2013.836709
  • Hung, W.-L., Suh, J. H., & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 25(1), 71–83. https://doi.org/10.1016/j.jfda.2016.11.008
  • Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346–356. https://doi.org/10.1016/j.foodchem.2014.03.112
  • İlyasoğlu, H., & Yilmaz, F. (2019). Characterisation of yoghurt enriched with polyunsaturated fatty acids by using walnut slurry. International Journal of Dairy Technology, 72(1), 110–119. https://doi.org/10.1111/1471-0307.12565
  • Jayarathna, S., Priyashantha, H., Johansson, M., Vidanarachchi, J. K., Jayawardana, B. C., & Liyanage, R. (2021). Probiotic enriched fermented soy-gel as a vegan substitute for dairy yoghurt. Journal of Food Processing and Preservation, 45(1), 1. https://doi.org/10.1111/jfpp.15092
  • Jung, H.-A., Su, B.-N., Keller, W. J., Mehta, R. G., & Kinghorn, A. D. (2006). Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). Journal of Agricultural and Food Chemistry, 54(6), 2077–2082. https://doi.org/10.1021/jf052649z
  • Khavinson, V. K., Kuznik, B. I., Tarnovskaya, S. I., & Lin’kova, N. S. (2016). Short peptides and telomere length regulator hormone irisin. Bulletin of Experimental Biology and Medicine, 160(3), 347–349. https://doi.org/10.1007/s10517-016-3167-y
  • Kim, H., Lim, C. Y., & Chung, M. S. (2021). Magnolia officinalis and its honokiol and magnolol constituents inhibit human norovirus surrogates. Foodborne Pathogens and Disease, 18(1), 24–30. https://doi.org/10.1089/fpd.2020.2805
  • Laursen, M. F., Sakanaka, M., von Burg, N., Mörbe, U., Andersen, D., Moll, J. M., Pekmez, C. T., Rivollier, A., Michaelsen, K. F., Mølgaard, C., Lind, M. V., Dragsted, L. O., Katayama, T., Frandsen, H. L., Vinggaard, A. M., Bahl, M. I., Brix, S., Agace, W., Licht, T. R., … Roager, H. M. (2020). Breastmilk-promoted bifidobacteria produce aromatic amino acids in the infant gut. Microbiology, 1–39. https://doi.org/10.1101/2020.01.22.914994
  • Li, M., Li, W., Wu, J., Zheng, Y., Shao, J., Li, Q., Kang, S., Zhang, Z., Yue, X., & Yang, M. (2020). Quantitative lipidomics reveals alterations in donkey milk lipids according to lactation. Food Chemistry, 310, 125866. https://doi.org/10.1016/j.foodchem.2019.125866
  • Li, Q., Yin, R., Zhang, Q., Wang, X., Hu, X., Gao, Z., & Duan, Z. (2017). Chemometrics analysis on the content of fatty acid compositions in different walnut (Juglans regia L.) varieties. European Food Research and Technology, 243(12), 2235–2242. https://doi.org/10.1007/s00217-017-2925-z
  • Li, S., Wang, H., Guo, L., Zhao, H., & Ho, C.-T. (2014). Chemistry and bioactivity of nobiletin and its metabolites. Journal of Functional Foods, 6, 2–10. https://doi.org/10.1016/j.jff.2013.12.011
  • Li, Y.-C., Du, W., Meng, F.-B., Rao, J.-W., Liu, D.-Y., & Peng, L.-X. (2021). Tartary buckwheat protein hydrolysates enhance the salt tolerance of the soy sauce fermentation yeast Zygosaccharomyces rouxii. Food Chemistry, 342, 128382. https://doi.org/10.1016/j.foodchem.2020.128382
  • Liu, W., Pu, X., Sun, J., Shi, X., Cheng, W., & Wang, B. (2022). Effect of lactobacillus plantarum on functional characteristics and flavor profile of fermented walnut milk. LWT-Food Science and Technology, 160, 113254. https://doi.org/10.1016/j.lwt.2022.113254
  • Loh, L. X., Ng, D. H. J., Toh, M., Lu, Y., & Liu, S. Q. (2021). Targeted and nontargeted metabolomics of amino acids and bioactive metabolites in probiotic-fermented unhopped beers using liquid chromatography high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 69(46), 14024–14036. https://doi.org/10.1021/acs.jafc.1c03992
  • Lourens-Hattingh, A., & Viljoen, B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11(1–2), 1–17. https://doi.org/10.1016/S0958-6946(01)00036-X
  • Ma, X., Wang, J., Lu, X., & Qiao, C. (2013). A two-stage process for the production of a novel cheese flavor powder: The process of novel cheese flavor powder. Journal of Food Process Engineering, 36(5), 591–597. https://doi.org/10.1111/jfpe.12022
  • Mäkinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56(3), 339–349. https://doi.org/10.1080/10408398.2012.761950
  • Mao, B., Guo, W., Huang, Z., Tang, X., Zhang, Q., Yang, B., Zhao, J., Cui, S., & Zhang, H. (2022). Production of conjugated fatty acids in probiotic-fermented walnut milk with the addition of lipase. LWT-Food Science and Technology, 172, 114204. https://doi.org/10.1016/j.lwt.2022.114204
  • Meinlschmidt, P. (2016). Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. LWT-Food Science and Technology, 71, 202–212. https://doi.org/10.1016/j.lwt.2016.03.026
  • Meng, F.-B., Zhou, L., Li, J.-J., Li, Y.-C., Wang, M., Zou, L.-H., Liu, D.-Y., & Chen, W.-J. (2022). The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Research International, 157, 111416. https://doi.org/10.1016/j.foodres.2022.111416
  • Mink, R., Sommer, S., Kölling, R., Schmarr, H.-G., Baumbach, L., & Scharfenberger-Schmeer, M. (2014). Diacetyl reduction by commercial Saccharomyces cerevisiae strains during vinification: Diacetyl reduction by commercial Saccharomyces cerevisiae strains. Journal of the Institute of Brewing, 120(1), 23–26. https://doi.org/10.1002/jib.106
  • Mozzi, F., Ortiz, M. E., Bleckwedel, J., De Vuyst, L., & Pescuma, M. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International, 54(1), 1152–1161. https://doi.org/10.1016/j.foodres.2012.11.010
  • Mu, W., Yu, S., Zhu, L., Jiang, B., & Zhang, T. (2012). Production of 3-phenyllactic acid and 4-hydroxyphenyllactic acid by Pediococcus acidilactici DSM 20284 fermentation. European Food Research and Technology, 235(3), 581–585. https://doi.org/10.1007/s00217-012-1768-x
  • Ni, Z.-J., Zhang, Y.-G., Chen, S.-X., Thakur, K., Wang, S., Zhang, J.-G., Shang, Y.-F., & Wei, Z.-J. (2022). Exploration of walnut components and their association with health effects. Critical Reviews in Food Science and Nutrition, 62(19), 5113–5129. https://doi.org/10.1080/10408398.2021.1881439
  • Nieminen, M. T., Hernandez, M., Novak-Frazer, L., Kuula, H., Ramage, G., Bowyer, P., Warn, P., Sorsa, T., & Rautemaa, R. (2014). dl-2-Hydroxyisocaproic acid attenuates inflammatory responses in a Murine Candida albicans biofilm model. Clinical and Vaccine Immunology, 21(9), 1240–1245. https://doi.org/10.1128/CVI.00339-14
  • Oliveira, I., Sousa, A., Ferreira, I. C. F. R., Bento, A., Estevinho, L., & Pereira, J. A. (2008). Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology, 46(7), 2326–2331. https://doi.org/10.1016/j.fct.2008.03.017
  • Ozcan, T., Sahin, S., Akpinar-Bayizit, A., & Yilmaz-Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterisation in Buffalo milk kefir. International Journal of Dairy Technology, 72(1), 65–73. https://doi.org/10.1111/1471-0307.12560
  • Park, B., Jo, K., Lee, T. G., Hyun, S.-W., Kim, J. S., & Kim, C.-S. (2019a). Polydatin inhibits NLRP3 inflammasome in dry eye disease by attenuating oxidative stress and inhibiting the NF-κB pathway. Nutrients, 11(11), 2792. https://doi.org/10.3390/nu11112792
  • Park, M. K., Choi, H.-S., Kim, Y.-S., & Cho, I. H. (2019b). Comparison of volatile profiles in Fagopyrum esculentum (buckwheat) Soksungjang prepared with different starter cultures during fermentation. Food Science and Biotechnology, 28(4), 1037–1045. https://doi.org/10.1007/s10068-018-00549-6
  • Pua, A., Tang, V. C. Y., Goh, R. M. V., Sun, J., Lassabliere, B., & Liu, S. Q. (2022). Ingredients, processing, and fermentation: Addressing the organoleptic boundaries of plant-based dairy analogues. Foods (Basel, Switzerland), 11(6), 875. https://doi.org/10.3390/foods11060875
  • Qiao, Z., Wang, X., Wang, C., Han, J., Qi, W., Zhang, H., Liu, Z., & You, C. (2022). Lactobacillus paracasei BD5115-derived 2-hydroxy-3-methylbutyric acid promotes intestinal epithelial cells proliferation by upregulating the MYC signaling pathway. Frontiers in Nutrition, 9, 799053. https://doi.org/10.3389/fnut.2022.799053
  • Radha, A., Jaswal, N., Thakur, K. K., & Gujral, I. K. (2021). A review on interaction of different preservatives with plasma proteins. Materials Today: Proceedings, 37, 2446–2452. https://doi.org/10.1016/j.matpr.2020.08.283
  • Ros, E. (2010). Health benefits of nut consumption. Nutrients, 2(7), 652–682. https://doi.org/10.3390/nu2070652
  • Ru, Y., Wang, Z., Li, Y., Kan, H., Kong, K., & Zhang, X. (2022). The influence of probiotic fermentation on the active compounds and bioactivities of walnut flowers. Journal of Food Biochemistry, 46(4), SI. https://doi.org/10.1111/jfbc.13887
  • Sandhu, K. S., Punia, S., & Kaur, M. (2016). Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT - Food Science and Technology, 71, 323–328. https://doi.org/10.1016/j.lwt.2016.04.008
  • Sathe, S. K., Venkatachalam, M., Sharma, G. M., Kshirsagar, H. H., Teuber, S. S., & Roux, K. H. (2009). Solubilization and electrophoretic characterization of select edible nut seed proteins. Journal of Agricultural and Food Chemistry, 57(17), 7846–7856. https://doi.org/10.1021/jf9016338
  • Schlegel, K., Lidzba, N., Ueberham, E., Eisner, P., & Schweiggert-Weisz, U. (2021). Fermentation of lupin protein hydrolysates—Effects on their functional properties, sensory profile and the allergenic potential of the major lupin allergen lup an 1. Foods (basel, Switzerland), 10(2), 281. https://doi.org/10.3390/foods10020281
  • Sharma, A., Noda, M., Sugiyama, M., Ahmad, A., & Kaur, B. (2021). Production of functional buttermilk and soymilk using Pediococcus acidilactici BD16 (alaD+). Molecules, 26(15), 4671. https://doi.org/10.3390/molecules26154671
  • Shudong, P., Guo, C., Wu, S., Cui, H., Suo, H., & Duan, Z. (2022). Bioactivity and metabolomics changes of plant-based drink fermented by Bacillus coagulans VHProbi C08. LWT - Food Science and Technology, 156, 113030. https://doi.org/10.1016/j.lwt.2021.113030
  • Shumoy, H., Gabaza, M., Vandevelde, J., & Raes, K. (2019). Impact of fermentation on in vitro bioaccessibility of phenolic compounds of tef injera. LWT - Food Science and Technology, 99, 313–318. https://doi.org/10.1016/j.lwt.2018.09.085
  • Silvestre, G. F. G., de Lucena, R. P., & da Silva Alves, H. (2022). Cucurbitacins and the immune system: Update in research on anti-inflammatory, antioxidant, and immunomodulatory mechanisms. Current Medicinal Chemistry, 29(21), 3774–3789. https://doi.org/10.2174/0929867329666220107153253
  • Sim, D.-H., Shin, K.-C., & Oh, D.-K. (2015). 13- Hydroxy- 9Z, 11E- octadecadienoic acid production by recombinant cells expressing Burkholderia thailandensis 13- lipoxygenase. Journal of the American Oil Chemists’ Society, 92(9), 1259–1266. https://doi.org/10.1007/s11746-015-2694-4
  • Spence, L. A., Henschel, B., Li, R., Tekwe, C. D., & Thiagarajah, K. (2023). Adding walnuts to the usual diet can improve diet quality in the United States: Diet modeling study based on NHANES 2015–2018. Nutrients, 15(2), 258. https://doi.org/10.3390/nu15020258
  • Sun, L., Li, M., Zhang, S., Bao, Z., & Lin, S. (2022). Explore the mechanism of pulsed electric field technology on improving the antioxidant activity of Leu-Tyr-Gly-Ala-Leu-Gly-Leu. Food Bioscience, 47, 101629. https://doi.org/10.1016/j.fbio.2022.101629
  • Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Applied Microbiology and Biotechnology, 103(23–24), 9263–9275. https://doi.org/10.1007/s00253-019-10175-9
  • Verbeke, K. A., Boobis, A. R., Chiodini, A., Edwards, C. A., Franck, A., Kleerebezem, M., Nauta, A., Raes, J., van Tol, E. A. F., & Tuohy, K. M. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28(1), 42–66. https://doi.org/10.1017/S0954422415000037
  • Wang, C.-Y., Wu, S.-J., & Shyu, Y.-T. (2014). Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. Journal of Bioscience and Bioengineering, 117(4), 449–456. https://doi.org/10.1016/j.jbiosc.2013.10.002
  • Wang, J., Wang, G., Zhang, Y., Zhang, R., & Zhang, Y. (2021a). Novel angiotensin-converting enzyme inhibitory peptides identified from walnut glutelin-1 hydrolysates: Molecular interaction, stability, and antihypertensive effects. Nutrients, 14(1), 151. https://doi.org/10.3390/nu14010151
  • Wang, Q., Zhi, T., Han, P., Li, S., Xia, J., Chen, Z., Wang, C., Wu, Y., Jia, Y., & Ma, A. (2021b). Potential anti-inflammatory activity of walnut protein derived peptide leucine-proline-phenylalanine in lipopolysaccharides-irritated RAW264.7 cells. Food and Agricultural Immunology, 32(1), 663–678. https://doi.org/10.1080/09540105.2021.1982870
  • Wang, X., Li, X., & Chen, D. (2011). Evaluation of antioxidant activity of isoferulic acid in vitro. Natural Product Communications, 6(9), 1934578X1100600. https://doi.org/10.1177/1934578X1100600919
  • Wang, X., Zhang, P., & Zhang, X. (2021). Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules, 26(19), 6076. https://doi.org/10.3390/molecules26196076
  • Wang, X., Zhang, Z., Xu, H., Li, X., & Hao, X. (2020). Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Advances, 10(20), 11624–11633. https://doi.org/10.1039/D0RA00425A
  • Widelski, J., Luca, S., Skiba, A., Chinou, I., Marcourt, L., Wolfender, J.-L., & Skalicka-Wozniak, K. (2018). Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules, 23(5), 1222. https://doi.org/10.3390/molecules23051222
  • Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203–243. https://doi.org/10.1016/j.fshw.2019.08.003
  • Xie, P., Huang, L., Zhang, C., & Zhang, Y. (2015). Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. Journal of Functional Foods, 16, 460–471. https://doi.org/10.1016/j.jff.2015.05.005
  • Xu, J., Jin, F., Hao, J., Regenstein, J. M., & Wang, F. (2020). Preparation of soy sauce by walnut meal fermentation: Composition, antioxidant properties, and angiotensin-converting enzyme inhibitory activities. Food Science & Nutrition, 8(3), 1665–1676. https://doi.org/10.1002/fsn3.1453
  • Yang, H., Qu, Y., Li, J., Liu, X., Wu, R., & Wu, J. (2020). Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT - Food Science and Technology, 128, 109442. https://doi.org/10.1016/j.lwt.2020.109442
  • Yang, M.-H., & Choong, Y.-M. (2001). A rapid gas chromatographic method for direct determination of short-chain (C2–C12) volatile organic acids in foods. Food Chemistry, 75(1), 101–108. https://doi.org/10.1016/S0308-8146(01)00211-4
  • Yang, Z., Zhu, X., Wen, A., & Qin, L. (2022). Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Science & Nutrition, 10(9), 3143–3153. https://doi.org/10.1002/fsn3.2913
  • Yarlina, V. P., Djali, M., & Andoyo, R. (2020). A review of protein hydrolysis fermented foods and their potential for health benefits. IOP Conference Series: Earth and Environmental Science, 443(1), 012085. https://doi.org/10.1088/1755-1315/443/1/012085
  • Yi, C., Li, Y., Zhu, H., Liu, Y., & Quan, K. (2021). Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT - Food Science and Technology, 146, 111434. https://doi.org/10.1016/j.lwt.2021.111434
  • Yun-Fei, L., Moriwaki, A., Hayashi, Y., Tomizawa, K., Itano, T., & Matsui, H. (1996). Effects of neurotensin on neurons in the rat central amygdaloid nucleus in vitro. Brain Research Bulletin, 40(2), 135–141. https://doi.org/10.1016/0361-9230(96)00044-5
  • Zha, M., Li, K., Zhang, W., Sun, Z., Kwok, L.-Y., Menghe, B., & Chen, Y. (2021). Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in milk fermented by Lactobacillus plantarum P9. LWT - Food Science and Technology, 140, 110759. https://doi.org/10.1016/j.lwt.2020.110759
  • Zhang, X., Zhang, S., Xie, B., & Sun, Z. (2021). Influence of lactic acid bacteria fermentation on physicochemical properties and antioxidant activity of chickpea yam milk. Journal of Food Quality, 2021, 1–9. Article ID: 5523356. https://doi.org/10.1155/2021/5523356
  • Zhao, Q., Bi, Y., Guo, J., Liu, Y., Zhong, J., Pan, L., Tan, Y., & Yu, X. (2021). Pristimerin protects against inflammation and metabolic disorder in mice through inhibition of NLRP3 inflammasome activation. Acta Pharmacologica Sinica, 42(6), 975–986. https://doi.org/10.1038/s41401-020-00527-x
  • Zhong, L., Bornman, J. F., Wu, G., Hornoff, A., Dovi, K. A. P., AL-Ali, H., Aslam, N., & Johnson, S. K. (2018). The nutritional and phytochemical composition of the indigenous Australian pindan walnut (Terminalia cunninghamii) Kernels. Plant Foods for Human Nutrition, 73(1), 40–46. https://doi.org/10.1007/s11130-017-0647-9
  • Zhou, X., Liu, Z., Xie, L., Li, L., Zhou, W., & Zhao, L. (2022). The correlation mechanism between dominant bacteria and primary metabolites during fermentation of red sour soup. Foods (Basel, Switzerland), 11(3), 341. https://doi.org/10.3390/foods11030341